• Previous Article
    The "hot spots" conjecture on higher dimensional Sierpinski gaskets
  • CPAA Home
  • This Issue
  • Next Article
    Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species
January  2016, 15(1): 261-286. doi: 10.3934/cpaa.2016.15.261

Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators

1. 

Universidad Carlos III de Madrid, Av. Universidad 30, 28911-Leganés

2. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY

Received  March 2015 Revised  July 2015 Published  December 2015

As the main problem, the bi-Laplace equation \begin{eqnarray} \Delta^2 u=0 \quad (\Delta=D_x^2+D_y^2) \end{eqnarray} in a bounded domain $\Omega \subset R^2$, with inhomogeneous Dirichlet or Navier-type conditions on the smooth boundary $\partial \Omega$ is considered. In addition, there is a finite collection of curves \begin{eqnarray} \Gamma = \Gamma_1\cup...\cup\Gamma_m \subset \Omega, \end{eqnarray} on which we assume homogeneous Dirichlet conditions $u=0$, focusing at the origin $0 \in \Omega$ (the analysis would be similar for any other point). This makes the above elliptic problem overdetermined. Possible types of the behaviour of solution $u(x,y)$ at the tip $0$ of such admissible multiple cracks, being a singularity point, are described, on the basis of blow-up scaling techniques and spectral theory of pencils of non self-adjoint operators. Typical types of admissible cracks are shown to be governed by nodal sets of a countable family of harmonic polynomials, which are now represented as pencil eigenfunctions, instead of their classical representation via a standard Sturm--Liouville problem. Eventually, for a fixed admissible crack formation at the origin, this allows us to describe all boundary data, which can generate such a blow-up crack structure. In particular, it is shown how the co-dimension of this data set increases with the number of asymptotically straight-line cracks focusing at 0.
Citation: Pablo Álvarez-Caudevilla, V. A. Galaktionov. Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators. Communications on Pure & Applied Analysis, 2016, 15 (1) : 261-286. doi: 10.3934/cpaa.2016.15.261
References:
[1]

R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, 65 (1975).   Google Scholar

[2]

V. Adamyan and V. Pivovarchik, On spectra of some classes of quadratic operator pencils,, Contributions to operator theory in spaces with an indefinite metric (Vienna, 106 (1998), 23.  doi: 10.1007/978-3-0348-8812-7_2.  Google Scholar

[3]

P. Álvarez-Caudevilla and V. A. Galaktionov, The $p$-Laplace equation in domains with multiple crack section via pencil operators,, \emph{Advances Nonlinear Studies}, 15 (2015), 91.   Google Scholar

[4]

J. W. Dettman, Mathematical Methods in Physics and Engineering,, Mc-Graw-Hill, (1969).   Google Scholar

[5]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohozaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range,, \emph{Adv. Differ. Equat., 9 (2004), 1009.   Google Scholar

[6]

D. Funaro, Polynomial Approximation of Differential Equations,, Springer-Verlag, (1992).   Google Scholar

[7]

V. A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications,, Chapman$\, (2004).  doi: 10.1201/9780203998069.  Google Scholar

[8]

V. A. Galaktionov, On extensions of Hardy's inequalities,, \emph{Comm. Cont. Math.}, 7 (2005), 97.  doi: 10.1142/S0219199705001659.  Google Scholar

[9]

A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis,, Nauka, (1976).   Google Scholar

[10]

V. A. Kondrat'ev, Boundary value problems for parabolic equations in closed regions,, \emph{Trans. Moscow Math. Soc.}, 15 (1966), 400.   Google Scholar

[11]

V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points,, \emph{Trans. Moscow Math. Soc.}, 16 (1967), 209.   Google Scholar

[12]

M. Krein and H. Langer, On some mathematical principles in the linear theory of damped oscillations of continua. I, II,, \emph{Int. Equat. Oper. Theory}, 1 (1978), 364.  doi: 10.1007/BF01682844.  Google Scholar

[13]

A. Lemenant, On the homogeneity of global minimizers for the Mumford-Shah functional when $K$ is a smooth cone,, \emph{Rend. Sem. Mat. Univ. Padova}, 122 (2009), 129.  doi: 10.4171/RSMUP/122-9.  Google Scholar

[14]

A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils,, Translated from the Russian by H. H. McFaden. Translation edited by Ben Silver. With an appendix by M. V. Keldysh. Transl. of Math. Mon., 71 (1988).   Google Scholar

[15]

C. Sturm, Mémoire sur une classe d'équations à différences partielles,, \emph{J. Math. Pures Appl., 1 (1836), 373.   Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, 65 (1975).   Google Scholar

[2]

V. Adamyan and V. Pivovarchik, On spectra of some classes of quadratic operator pencils,, Contributions to operator theory in spaces with an indefinite metric (Vienna, 106 (1998), 23.  doi: 10.1007/978-3-0348-8812-7_2.  Google Scholar

[3]

P. Álvarez-Caudevilla and V. A. Galaktionov, The $p$-Laplace equation in domains with multiple crack section via pencil operators,, \emph{Advances Nonlinear Studies}, 15 (2015), 91.   Google Scholar

[4]

J. W. Dettman, Mathematical Methods in Physics and Engineering,, Mc-Graw-Hill, (1969).   Google Scholar

[5]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohozaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range,, \emph{Adv. Differ. Equat., 9 (2004), 1009.   Google Scholar

[6]

D. Funaro, Polynomial Approximation of Differential Equations,, Springer-Verlag, (1992).   Google Scholar

[7]

V. A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications,, Chapman$\, (2004).  doi: 10.1201/9780203998069.  Google Scholar

[8]

V. A. Galaktionov, On extensions of Hardy's inequalities,, \emph{Comm. Cont. Math.}, 7 (2005), 97.  doi: 10.1142/S0219199705001659.  Google Scholar

[9]

A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis,, Nauka, (1976).   Google Scholar

[10]

V. A. Kondrat'ev, Boundary value problems for parabolic equations in closed regions,, \emph{Trans. Moscow Math. Soc.}, 15 (1966), 400.   Google Scholar

[11]

V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points,, \emph{Trans. Moscow Math. Soc.}, 16 (1967), 209.   Google Scholar

[12]

M. Krein and H. Langer, On some mathematical principles in the linear theory of damped oscillations of continua. I, II,, \emph{Int. Equat. Oper. Theory}, 1 (1978), 364.  doi: 10.1007/BF01682844.  Google Scholar

[13]

A. Lemenant, On the homogeneity of global minimizers for the Mumford-Shah functional when $K$ is a smooth cone,, \emph{Rend. Sem. Mat. Univ. Padova}, 122 (2009), 129.  doi: 10.4171/RSMUP/122-9.  Google Scholar

[14]

A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils,, Translated from the Russian by H. H. McFaden. Translation edited by Ben Silver. With an appendix by M. V. Keldysh. Transl. of Math. Mon., 71 (1988).   Google Scholar

[15]

C. Sturm, Mémoire sur une classe d'équations à différences partielles,, \emph{J. Math. Pures Appl., 1 (1836), 373.   Google Scholar

[1]

Nuno Costa Dias, Andrea Posilicano, João Nuno Prata. Self-adjoint, globally defined Hamiltonian operators for systems with boundaries. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1687-1706. doi: 10.3934/cpaa.2011.10.1687

[2]

Abdallah El Hamidi, Aziz Hamdouni, Marwan Saleh. On eigenelements sensitivity for compact self-adjoint operators and applications. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 445-455. doi: 10.3934/dcdss.2016006

[3]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[4]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[5]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

[6]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[7]

Aliang Xia, Jianfu Yang. Normalized solutions of higher-order Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 447-462. doi: 10.3934/dcds.2019018

[8]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Computational networks and systems-homogenization of self-adjoint differential operators in variational form on periodic networks and micro-architectured systems. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 139-169. doi: 10.3934/naco.2017010

[9]

Frédéric Robert. On the influence of the kernel of the bi-harmonic operator on fourth order equations with exponential growth. Conference Publications, 2007, 2007 (Special) : 875-882. doi: 10.3934/proc.2007.2007.875

[10]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[11]

Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361

[12]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

[13]

Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences & Engineering, 2006, 3 (1) : 125-135. doi: 10.3934/mbe.2006.3.125

[14]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[15]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[16]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

[17]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[18]

Regina Martínez, Carles Simó. Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 1-24. doi: 10.3934/dcds.2011.29.1

[19]

Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure & Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547

[20]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]