January  2016, 15(1): 287-297. doi: 10.3934/cpaa.2016.15.287

The "hot spots" conjecture on higher dimensional Sierpinski gaskets

1. 

School of Mathematical Science, Zhejiang University, Hangzhou, 310027, China, China

Received  April 2015 Revised  September 2015 Published  December 2015

In this paper, using spectral decimation, we prove that the ``hot spots" conjecture holds on higher dimensional Sierpinski gaskets.
Citation: Xiao-Hui Li, Huo-Jun Ruan. The "hot spots" conjecture on higher dimensional Sierpinski gaskets. Communications on Pure & Applied Analysis, 2016, 15 (1) : 287-297. doi: 10.3934/cpaa.2016.15.287
References:
[1]

R. Atar and K. Burdzy, On Neumann eigenfunctions in lip domains,, \emph{J. Amer. Math. Soc.}, 17 (2004), 243.  doi: 10.1090/S0894-0347-04-00453-9.  Google Scholar

[2]

N. Bajorin, T. Chen, A. Dagan, C. Emmons, M. Hussein, M. Khalil, P. Mody, B. Steinhurst and A. Teplyaev, Vibration modes of $3n$-gaskets and other fractals,, \emph{J. Phys. A}, 41 (2008).  doi: 10.1088/1751-8113/41/1/015101.  Google Scholar

[3]

R. Bañuelos and K. Burdzy, On the "hot spots'' conjecture of J. Rauch,, \emph{J. Funct. Anal.}, 164 (1999), 1.  doi: 10.1006/jfan.1999.3397.  Google Scholar

[4]

K. Burdzy, The hot spots problem in planar domains with one hole,, \emph{Duke Math J.}, 129 (2005), 481.  doi: 10.1215/S0012-7094-05-12932-5.  Google Scholar

[5]

K. Burdzy and W. Werner, A counterexample to the "hot spots'' conjecture,, \emph{Ann. Math.}, 149 (1999), 309.  doi: 10.2307/121027.  Google Scholar

[6]

S. Drenning and R. S. Strichartz, Spectral decimation on Hambly's homogeneous hierarchical gaskets,, \emph{Illinois J. Math.}, 53 (2009), 915.   Google Scholar

[7]

M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket,, \emph{Potential Anal.}, 1 (1992), 1.  doi: 10.1007/BF00249784.  Google Scholar

[8]

M. Ionescu, E. P. J. Pearse, L. G. Rogers, H.-J. Ruan and R. S. Strichartz, The resolvent kernel for PCF self-similar fractals,, \emph{Trans. Amer. Math. Soc.}, 362 (2010), 4451.  doi: 10.1090/S0002-9947-10-05098-1.  Google Scholar

[9]

D. Jerison and N. Nadirashvili, The "hot spots'' conjecture for domains with two axes of symmetry,, \emph{J. Amer. Math. Soc.}, 13 (2000), 741.  doi: 10.1090/S0894-0347-00-00346-5.  Google Scholar

[10]

J. Kigami, A harmonic calculus on the Sierpinski Spaces,, \emph{Japan J. Appl. Math.}, 6 (1989), 259.  doi: 10.1007/BF03167882.  Google Scholar

[11]

J. Kigami, Harmonic calculus on p.c.f. self-similar sets,, \emph{Trans. Amer. Math. Soc.}, 335 (1993), 721.  doi: 10.2307/2154402.  Google Scholar

[12]

J. Kigami, Analysis on Fractals,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511470943.  Google Scholar

[13]

H.-J. Ruan, The "hot spots" conjecture for the Sierpinski gasket,, \emph{Nonlinear Anal.}, 75 (2012), 469.  doi: 10.1016/j.na.2011.08.048.  Google Scholar

[14]

H.-J. Ruan and Y.-W. Zheng, The "hot spots" conjecture on the level-3 Sierpinski gasket,, \emph{Nonlinear Anal.}, 81 (2013), 101.  doi: 10.1016/j.na.2012.10.014.  Google Scholar

[15]

T. Shima, On eigenvalue problems for the random walks on the Sierpinski pre-gaskets,, \emph{Japan J. Indust. Appl. Math.}, 8 (1991), 127.  doi: 10.1007/BF03167188.  Google Scholar

[16]

T. Shima, On eigenvalue problems for Laplacians on p.c.f. self-similar sets,, \emph{Japan J. Indust. Appl. Math.}, 13 (1996), 1.  doi: 10.1007/BF03167295.  Google Scholar

[17]

R. S. Strichartz, Differential Equations on Fractals,, Princeton University Press, (2006).   Google Scholar

show all references

References:
[1]

R. Atar and K. Burdzy, On Neumann eigenfunctions in lip domains,, \emph{J. Amer. Math. Soc.}, 17 (2004), 243.  doi: 10.1090/S0894-0347-04-00453-9.  Google Scholar

[2]

N. Bajorin, T. Chen, A. Dagan, C. Emmons, M. Hussein, M. Khalil, P. Mody, B. Steinhurst and A. Teplyaev, Vibration modes of $3n$-gaskets and other fractals,, \emph{J. Phys. A}, 41 (2008).  doi: 10.1088/1751-8113/41/1/015101.  Google Scholar

[3]

R. Bañuelos and K. Burdzy, On the "hot spots'' conjecture of J. Rauch,, \emph{J. Funct. Anal.}, 164 (1999), 1.  doi: 10.1006/jfan.1999.3397.  Google Scholar

[4]

K. Burdzy, The hot spots problem in planar domains with one hole,, \emph{Duke Math J.}, 129 (2005), 481.  doi: 10.1215/S0012-7094-05-12932-5.  Google Scholar

[5]

K. Burdzy and W. Werner, A counterexample to the "hot spots'' conjecture,, \emph{Ann. Math.}, 149 (1999), 309.  doi: 10.2307/121027.  Google Scholar

[6]

S. Drenning and R. S. Strichartz, Spectral decimation on Hambly's homogeneous hierarchical gaskets,, \emph{Illinois J. Math.}, 53 (2009), 915.   Google Scholar

[7]

M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket,, \emph{Potential Anal.}, 1 (1992), 1.  doi: 10.1007/BF00249784.  Google Scholar

[8]

M. Ionescu, E. P. J. Pearse, L. G. Rogers, H.-J. Ruan and R. S. Strichartz, The resolvent kernel for PCF self-similar fractals,, \emph{Trans. Amer. Math. Soc.}, 362 (2010), 4451.  doi: 10.1090/S0002-9947-10-05098-1.  Google Scholar

[9]

D. Jerison and N. Nadirashvili, The "hot spots'' conjecture for domains with two axes of symmetry,, \emph{J. Amer. Math. Soc.}, 13 (2000), 741.  doi: 10.1090/S0894-0347-00-00346-5.  Google Scholar

[10]

J. Kigami, A harmonic calculus on the Sierpinski Spaces,, \emph{Japan J. Appl. Math.}, 6 (1989), 259.  doi: 10.1007/BF03167882.  Google Scholar

[11]

J. Kigami, Harmonic calculus on p.c.f. self-similar sets,, \emph{Trans. Amer. Math. Soc.}, 335 (1993), 721.  doi: 10.2307/2154402.  Google Scholar

[12]

J. Kigami, Analysis on Fractals,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511470943.  Google Scholar

[13]

H.-J. Ruan, The "hot spots" conjecture for the Sierpinski gasket,, \emph{Nonlinear Anal.}, 75 (2012), 469.  doi: 10.1016/j.na.2011.08.048.  Google Scholar

[14]

H.-J. Ruan and Y.-W. Zheng, The "hot spots" conjecture on the level-3 Sierpinski gasket,, \emph{Nonlinear Anal.}, 81 (2013), 101.  doi: 10.1016/j.na.2012.10.014.  Google Scholar

[15]

T. Shima, On eigenvalue problems for the random walks on the Sierpinski pre-gaskets,, \emph{Japan J. Indust. Appl. Math.}, 8 (1991), 127.  doi: 10.1007/BF03167188.  Google Scholar

[16]

T. Shima, On eigenvalue problems for Laplacians on p.c.f. self-similar sets,, \emph{Japan J. Indust. Appl. Math.}, 13 (1996), 1.  doi: 10.1007/BF03167295.  Google Scholar

[17]

R. S. Strichartz, Differential Equations on Fractals,, Princeton University Press, (2006).   Google Scholar

[1]

Kazuhiro Ishige, Y. Kabeya. Hot spots for the two dimensional heat equation with a rapidly decaying negative potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 833-849. doi: 10.3934/dcdss.2011.4.833

[2]

Shiping Cao, Hua Qiu. Boundary value problems for harmonic functions on domains in Sierpinski gaskets. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1147-1179. doi: 10.3934/cpaa.2020054

[3]

D. Kelleher, N. Gupta, M. Margenot, J. Marsh, W. Oakley, A. Teplyaev. Gaps in the spectrum of the Laplacian on $3N$-Gaskets. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2509-2533. doi: 10.3934/cpaa.2015.14.2509

[4]

Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1

[5]

Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1

[6]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiple solutions for a class of nonlinear Neumann eigenvalue problems. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1491-1512. doi: 10.3934/cpaa.2014.13.1491

[7]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[8]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[9]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[10]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[11]

Yuxia Guo, Ting Liu. Lazer-McKenna conjecture for higher order elliptic problem with critical growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 1159-1189. doi: 10.3934/dcds.2020074

[12]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[13]

Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239

[14]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[15]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[16]

Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743

[17]

Julián Fernández Bonder, Leandro M. Del Pezzo. An optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential. Communications on Pure & Applied Analysis, 2006, 5 (4) : 675-690. doi: 10.3934/cpaa.2006.5.675

[18]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[19]

Alexandru Kristály. Asymptotically critical problems on higher-dimensional spheres. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 919-935. doi: 10.3934/dcds.2009.23.919

[20]

N. Kamran, K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 359-378. doi: 10.3934/dcds.1998.4.359

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]