\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The "hot spots" conjecture on higher dimensional Sierpinski gaskets

Abstract Related Papers Cited by
  • In this paper, using spectral decimation, we prove that the ``hot spots" conjecture holds on higher dimensional Sierpinski gaskets.
    Mathematics Subject Classification: Primary: 28A80, 47A75; Secondary: 39A70, 47B39.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Atar and K. Burdzy, On Neumann eigenfunctions in lip domains, J. Amer. Math. Soc., 17 (2004), 243-265.doi: 10.1090/S0894-0347-04-00453-9.

    [2]

    N. Bajorin, T. Chen, A. Dagan, C. Emmons, M. Hussein, M. Khalil, P. Mody, B. Steinhurst and A. Teplyaev, Vibration modes of $3n$-gaskets and other fractals, J. Phys. A, 41 (2008), 015101.doi: 10.1088/1751-8113/41/1/015101.

    [3]

    R. Bañuelos and K. Burdzy, On the "hot spots'' conjecture of J. Rauch, J. Funct. Anal., 164 (1999), 1-33.doi: 10.1006/jfan.1999.3397.

    [4]

    K. Burdzy, The hot spots problem in planar domains with one hole, Duke Math J., 129 (2005), 481-502.doi: 10.1215/S0012-7094-05-12932-5.

    [5]

    K. Burdzy and W. Werner, A counterexample to the "hot spots'' conjecture, Ann. Math., 149 (1999), 309-317.doi: 10.2307/121027.

    [6]

    S. Drenning and R. S. Strichartz, Spectral decimation on Hambly's homogeneous hierarchical gaskets, Illinois J. Math., 53 (2009), 915-937.

    [7]

    M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Anal., 1 (1992), 1-35.doi: 10.1007/BF00249784.

    [8]

    M. Ionescu, E. P. J. Pearse, L. G. Rogers, H.-J. Ruan and R. S. Strichartz, The resolvent kernel for PCF self-similar fractals, Trans. Amer. Math. Soc., 362 (2010), 4451-4479.doi: 10.1090/S0002-9947-10-05098-1.

    [9]

    D. Jerison and N. Nadirashvili, The "hot spots'' conjecture for domains with two axes of symmetry, J. Amer. Math. Soc., 13 (2000), 741-772.doi: 10.1090/S0894-0347-00-00346-5.

    [10]

    J. Kigami, A harmonic calculus on the Sierpinski Spaces, Japan J. Appl. Math., 6 (1989), 259-290.doi: 10.1007/BF03167882.

    [11]

    J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., 335 (1993), 721-755.doi: 10.2307/2154402.

    [12]

    J. Kigami, Analysis on Fractals, Cambridge University Press, 2001.doi: 10.1017/CBO9780511470943.

    [13]

    H.-J. Ruan, The "hot spots" conjecture for the Sierpinski gasket, Nonlinear Anal., 75 (2012), 469-476.doi: 10.1016/j.na.2011.08.048.

    [14]

    H.-J. Ruan and Y.-W. Zheng, The "hot spots" conjecture on the level-3 Sierpinski gasket, Nonlinear Anal., 81 (2013), 101-109.doi: 10.1016/j.na.2012.10.014.

    [15]

    T. Shima, On eigenvalue problems for the random walks on the Sierpinski pre-gaskets, Japan J. Indust. Appl. Math., 8 (1991), 127-141.doi: 10.1007/BF03167188.

    [16]

    T. Shima, On eigenvalue problems for Laplacians on p.c.f. self-similar sets, Japan J. Indust. Appl. Math., 13 (1996), 1-23.doi: 10.1007/BF03167295.

    [17]

    R. S. Strichartz, Differential Equations on Fractals, Princeton University Press, 2006.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return