March  2016, 15(2): 319-334. doi: 10.3934/cpaa.2016.15.319

Traveling wave solutions of a reaction-diffusion equation with state-dependent delay

1. 

School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000

2. 

Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China

Received  October 2014 Revised  October 2015 Published  January 2016

This paper is concerned with the traveling wave solutions of a reaction-diffusion equation with state-dependent delay. When the birth function is monotone, the existence and nonexistence of monotone traveling wave solutions are established. When the birth function is not monotone, the minimal wave speed of nontrivial traveling wave solutions is obtained. The results are proved by the construction of upper and lower solutions and application of the fixed point theorem.
Citation: Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319
References:
[1]

W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, \emph{SIAM J. Appl. Math.}, 52 (1982), 855.  doi: 10.1137/0152048.  Google Scholar

[2]

H. G. Andrewartha and L. C. Birch, The Distribution and Abundance of Animals,, University of Chicago Press, (1954).   Google Scholar

[3]

O. Arino, K. P. Hadeler and M. L. Hbid, Existence of periodic solutions for delay differential equations with state dependent delay,, \emph{J. Differential Equations}, 144 (1998), 263.  doi: 10.1006/jdeq.1997.3378.  Google Scholar

[4]

K. L. Cooke and W. Huang, On the problem of linearization for state-dependent delay differential equations,, \emph{Proc. Amer. Math. Soc.}, 124 (1996), 1417.  doi: 10.1090/S0002-9939-96-03437-5.  Google Scholar

[5]

J. Fang and X. Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, \emph{J. Differential Equations}, 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[6]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications,, in \emph{Handbook of Differential Equations: Ordinary Differential Equations} (eds. A. Canada), (2006), 435.   Google Scholar

[7]

Q. Hu, J. Wu and X. Zou, Estimates of periods and global continua of periodic solutions for state-dependent delay equations,, \emph{SIAM J. Math. Anal., 44 (2012), 2401.  doi: 10.1137/100793712.  Google Scholar

[8]

X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, \emph{Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[9]

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterra competition-diffusion models with distributed delays,, \emph{J. Dynam. Diff. Eqns., 26 (2014), 583.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[10]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, \emph{J. Differential Equations, 171 (2001), 294.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[11]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations,, \emph{J. Differential Equations, 237 (2007), 259.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[12]

P. Magal and O. Arino, Existence of periodic solutions for a state-dependent delay differential equation,, \emph{J. Differential Equations, 165 (2000), 61.  doi: 10.1006/jdeq.1999.3759.  Google Scholar

[13]

J. Mallet-Paret and R. D. Nussbaum, Superstability and rigorous asymptotics in singularly perturbed state-dependent delay-differential equations,, \emph{J. Differential Equations, 250 (2011), 4037.  doi: 10.1016/j.jde.2010.10.024.  Google Scholar

[14]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, \emph{Trans. Amer. Math. Soc., 302 (1987), 587.  doi: 10.2307/2000859 .  Google Scholar

[15]

H. L. Smith and X. Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations,, \emph{SIAM J. Math. Anal., 31 (2000), 514.  doi: 10.1137/S0036141098346785.  Google Scholar

[16]

H. R. Thieme and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, \emph{J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[17]

H. O. Walther, Semiflows for neutral equations with state-dependent delays,, in \emph{Infinite dimensional dynamical systems} (eds. J. Mallet-Paret, (2013), 211.   Google Scholar

[18]

H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations,, \emph{J. Differential Equations, 247 (2009), 887.  doi: 10.1016/j.jde.2009.04.002.  Google Scholar

[19]

Z. C. Wang, W. T. Li and S. Ruan, Traveling wave fronts of reaction-diffusion systems with spatio-temporal delays,, \emph{J. Differential Equations, 222 (2006), 185.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[20]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, \emph{J. Dynam. Diff. Eqns., 13 (2001), 651.  doi: 10.1023/A:1016690424892.  Google Scholar

show all references

References:
[1]

W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, \emph{SIAM J. Appl. Math.}, 52 (1982), 855.  doi: 10.1137/0152048.  Google Scholar

[2]

H. G. Andrewartha and L. C. Birch, The Distribution and Abundance of Animals,, University of Chicago Press, (1954).   Google Scholar

[3]

O. Arino, K. P. Hadeler and M. L. Hbid, Existence of periodic solutions for delay differential equations with state dependent delay,, \emph{J. Differential Equations}, 144 (1998), 263.  doi: 10.1006/jdeq.1997.3378.  Google Scholar

[4]

K. L. Cooke and W. Huang, On the problem of linearization for state-dependent delay differential equations,, \emph{Proc. Amer. Math. Soc.}, 124 (1996), 1417.  doi: 10.1090/S0002-9939-96-03437-5.  Google Scholar

[5]

J. Fang and X. Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, \emph{J. Differential Equations}, 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[6]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications,, in \emph{Handbook of Differential Equations: Ordinary Differential Equations} (eds. A. Canada), (2006), 435.   Google Scholar

[7]

Q. Hu, J. Wu and X. Zou, Estimates of periods and global continua of periodic solutions for state-dependent delay equations,, \emph{SIAM J. Math. Anal., 44 (2012), 2401.  doi: 10.1137/100793712.  Google Scholar

[8]

X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, \emph{Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[9]

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterra competition-diffusion models with distributed delays,, \emph{J. Dynam. Diff. Eqns., 26 (2014), 583.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[10]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, \emph{J. Differential Equations, 171 (2001), 294.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[11]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations,, \emph{J. Differential Equations, 237 (2007), 259.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[12]

P. Magal and O. Arino, Existence of periodic solutions for a state-dependent delay differential equation,, \emph{J. Differential Equations, 165 (2000), 61.  doi: 10.1006/jdeq.1999.3759.  Google Scholar

[13]

J. Mallet-Paret and R. D. Nussbaum, Superstability and rigorous asymptotics in singularly perturbed state-dependent delay-differential equations,, \emph{J. Differential Equations, 250 (2011), 4037.  doi: 10.1016/j.jde.2010.10.024.  Google Scholar

[14]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, \emph{Trans. Amer. Math. Soc., 302 (1987), 587.  doi: 10.2307/2000859 .  Google Scholar

[15]

H. L. Smith and X. Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations,, \emph{SIAM J. Math. Anal., 31 (2000), 514.  doi: 10.1137/S0036141098346785.  Google Scholar

[16]

H. R. Thieme and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, \emph{J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[17]

H. O. Walther, Semiflows for neutral equations with state-dependent delays,, in \emph{Infinite dimensional dynamical systems} (eds. J. Mallet-Paret, (2013), 211.   Google Scholar

[18]

H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations,, \emph{J. Differential Equations, 247 (2009), 887.  doi: 10.1016/j.jde.2009.04.002.  Google Scholar

[19]

Z. C. Wang, W. T. Li and S. Ruan, Traveling wave fronts of reaction-diffusion systems with spatio-temporal delays,, \emph{J. Differential Equations, 222 (2006), 185.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[20]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, \emph{J. Dynam. Diff. Eqns., 13 (2001), 651.  doi: 10.1023/A:1016690424892.  Google Scholar

[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[6]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[9]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[10]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]