March  2016, 15(2): 341-365. doi: 10.3934/cpaa.2016.15.341

The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited

1. 

Department of Applied Mathematics, Hankyong National University, Ansong 456-749

2. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, Korea 305-701

Received  February 2015 Revised  November 2015 Published  January 2016

We consider the nonlinear Schrödinger equations with a potential on $\mathbb T^d$. For almost all potentials, we show the almost global stability in very high Sobolev norms. We apply an iteration of the Birkhoff normal form, as in the formulation introduced by Bourgain [4]. This result reproves a dynamical consequence of the infinite dimensional Birkhoff normal form theorem by Bambusi and Grebert [2].
Citation: Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure and Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341
References:
[1]

D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., 234 (2003), 253-285. doi: 10.1007/s00220-002-0774-4.

[2]

D. Bambusi and B. Grebert, Birkhoff normal form for PDE's with tame modulus, Duke Math. J., 135 (2006), 507-567. doi: 10.1215/S0012-7094-06-13534-2.

[3]

J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Intern. Math. Res. Notices, 6 (1996), 277-304. doi: 10.1155/S1073792896000207.

[4]

J. Bourgain, On diffusion in High-dimensional Hamiltonian systems and PDE, J. d'analyse Math., 80 (2000), 1-34. doi: 10.1007/BF02791532.

[5]

J. Bourgain, Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations, Ergodic Theory Dynam. Syst., 24 (2004), 1331-1357. doi: 10.1017/S0143385703000750.

[6]

D. Cohen, E. Hairer and C. Lubich, Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions, Arch. Rational Mech. Anal., 187 (2008), 341-368. doi: 10.1007/s00205-007-0095-z.

[7]

J. Colliander, S. Kwon and T. Oh, A remark on normal forms and the "upside-down" I -method for periodic NLS: growth of higher Sobolev norms, J. d'analyse Math., 118 (2012), 55-82. doi: 10.1007/s11854-012-0029-z.

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113. doi: 10.1007/s00222-010-0242-2.

[9]

L. H. Eliasson and S. B. Kuksin, KAM for nonlinear Schrödinger equation, Annals of Math., 172 (2010), 371-435. doi: 10.4007/annals.2010.172.371.

[10]

E. Faou, and B. Grebert, A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the d-dimensional torus, Analysis and PDE, 6 (2013), 1243-1262. doi: 10.2140/apde.2013.6.1243.

[11]

B. Grebert, Birkhoff normal form and Hamiltonian PDEs, Partial Differential Equations and Applications, 1-46, Sémin. Congr., 15, Soc. Math. France, Paris, 2007.

[12]

B. Grebert, T. Kappeler and J. Pöschel, Normal form theory for the NLS equatons,, preprint, (). 

[13]

B. Grebert, E. Paturel and L. Thomann, Modiifed scattering for the cubic Schrödinger equation on product spaces: the non resonance case, preprint,, \arXiv{1502.07699}., (). 

[14]

M. Guardia, Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential, Comm. Math. Phys., 329 (2014), 405-434. doi: 10.1007/s00220-014-1977-1.

[15]

M. Guardia, and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 71-149. doi: 10.4171/JEMS/499.

[16]

Z. Hani, B. Pausader, N. Tzvetkov and N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum of mathematics, Pi, 3 (2015), e4, 63pages. doi: 10.1017/fmp.2015.5.

[17]

T. Kappeler and J. Pöschel, KdV and KAM, A Series of Modern Surveys in Mathematics, Springer, 2003. doi: 10.1007/978-3-662-08054-2.

[18]

S. B. Kuksin, Oscillations in space-periodic nonlinear Schrodinger equations, Geom. Funct. Anal., 7 (1997), 338-363. doi: 10.1007/PL00001622.

[19]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on $R$, Indiana Univ. Math. J., 60 (2011), 1487-1516. doi: 10.1512/iumj.2011.60.4399.

[20]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations, Discret. Contin. Dyn. Syst., 32 (2012), 3733-3771. doi: 10.3934/dcds.2012.32.3733.

[21]

G. Staffilani, On the growth of high sobolev norms of solutions for kdv and Schrödinger equations, Duke Math. J., 86 (1997), 109-142. doi: 10.1215/S0012-7094-97-08604-X.

[22]

W.-M. Wang, Long time anderson localization for the nonlinear random Schrödinger equation, J. Stat. Physics, 134 (2009), 953-968. doi: 10.1007/s10955-008-9649-1.

show all references

References:
[1]

D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., 234 (2003), 253-285. doi: 10.1007/s00220-002-0774-4.

[2]

D. Bambusi and B. Grebert, Birkhoff normal form for PDE's with tame modulus, Duke Math. J., 135 (2006), 507-567. doi: 10.1215/S0012-7094-06-13534-2.

[3]

J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Intern. Math. Res. Notices, 6 (1996), 277-304. doi: 10.1155/S1073792896000207.

[4]

J. Bourgain, On diffusion in High-dimensional Hamiltonian systems and PDE, J. d'analyse Math., 80 (2000), 1-34. doi: 10.1007/BF02791532.

[5]

J. Bourgain, Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations, Ergodic Theory Dynam. Syst., 24 (2004), 1331-1357. doi: 10.1017/S0143385703000750.

[6]

D. Cohen, E. Hairer and C. Lubich, Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions, Arch. Rational Mech. Anal., 187 (2008), 341-368. doi: 10.1007/s00205-007-0095-z.

[7]

J. Colliander, S. Kwon and T. Oh, A remark on normal forms and the "upside-down" I -method for periodic NLS: growth of higher Sobolev norms, J. d'analyse Math., 118 (2012), 55-82. doi: 10.1007/s11854-012-0029-z.

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113. doi: 10.1007/s00222-010-0242-2.

[9]

L. H. Eliasson and S. B. Kuksin, KAM for nonlinear Schrödinger equation, Annals of Math., 172 (2010), 371-435. doi: 10.4007/annals.2010.172.371.

[10]

E. Faou, and B. Grebert, A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the d-dimensional torus, Analysis and PDE, 6 (2013), 1243-1262. doi: 10.2140/apde.2013.6.1243.

[11]

B. Grebert, Birkhoff normal form and Hamiltonian PDEs, Partial Differential Equations and Applications, 1-46, Sémin. Congr., 15, Soc. Math. France, Paris, 2007.

[12]

B. Grebert, T. Kappeler and J. Pöschel, Normal form theory for the NLS equatons,, preprint, (). 

[13]

B. Grebert, E. Paturel and L. Thomann, Modiifed scattering for the cubic Schrödinger equation on product spaces: the non resonance case, preprint,, \arXiv{1502.07699}., (). 

[14]

M. Guardia, Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential, Comm. Math. Phys., 329 (2014), 405-434. doi: 10.1007/s00220-014-1977-1.

[15]

M. Guardia, and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 71-149. doi: 10.4171/JEMS/499.

[16]

Z. Hani, B. Pausader, N. Tzvetkov and N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum of mathematics, Pi, 3 (2015), e4, 63pages. doi: 10.1017/fmp.2015.5.

[17]

T. Kappeler and J. Pöschel, KdV and KAM, A Series of Modern Surveys in Mathematics, Springer, 2003. doi: 10.1007/978-3-662-08054-2.

[18]

S. B. Kuksin, Oscillations in space-periodic nonlinear Schrodinger equations, Geom. Funct. Anal., 7 (1997), 338-363. doi: 10.1007/PL00001622.

[19]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on $R$, Indiana Univ. Math. J., 60 (2011), 1487-1516. doi: 10.1512/iumj.2011.60.4399.

[20]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations, Discret. Contin. Dyn. Syst., 32 (2012), 3733-3771. doi: 10.3934/dcds.2012.32.3733.

[21]

G. Staffilani, On the growth of high sobolev norms of solutions for kdv and Schrödinger equations, Duke Math. J., 86 (1997), 109-142. doi: 10.1215/S0012-7094-97-08604-X.

[22]

W.-M. Wang, Long time anderson localization for the nonlinear random Schrödinger equation, J. Stat. Physics, 134 (2009), 953-968. doi: 10.1007/s10955-008-9649-1.

[1]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[2]

Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089

[3]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[5]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[6]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[7]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[8]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[9]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[10]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393

[11]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[12]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[13]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[14]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[15]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[16]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[17]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure and Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

[18]

Tadahiro Oh. Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1563-1580. doi: 10.3934/cpaa.2015.14.1563

[19]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[20]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (161)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]