Advanced Search
Article Contents
Article Contents

Optimal Szegö-Weinberger type inequalities

Abstract Related Papers Cited by
  • Denote with $\mu _{1}(\Omega ;e^{h( |x|) })$ the first nontrivial eigenvalue of the Neumann problem \begin{eqnarray} &-div( e^{h( |x|) }\nabla u) =\mu e^{h(|x|) }u \quad in \ \Omega \\ &\frac{\partial u}{\partial \nu }=0 \quad on \ \partial \Omega, \end{eqnarray} where $\Omega $ is a bounded and Lipschitz domain in $\mathbb{R}^{N}$. Under suitable assumption on $h$ we prove that the ball centered at the origin is the unique set maximizing $\mu _{1}(\Omega ;e^{h( |x|)})$ among all Lipschitz bounded domains $\Omega $ of $\mathbb{R}^{N}$ of prescribed $ e^{h( |x|) }dx$-measure and symmetric about the origin. Moreover, an example in the model case $h( |x|) =|x|^{2},$ shows that, in general, the assumption on the symmetry of the domain cannot be dropped. In the one-dimensional case, i.e. when $\Omega $ reduces to an interval $(a,b), $ we consider a wide class of weights (including both Gaussian and anti-Gaussian). We then describe the behavior of the eigenvalue as the interval $(a,b)$ slides along the $x$-axis keeping fixed its weighted length.
    Mathematics Subject Classification: Primary: 35B45; Secondary: 35P15.


    \begin{equation} \\ \end{equation}
  • [1]

    M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, Spectral Theory and Geometry, Edinburgh, 1998, in: London Math. Soc. Lecture Note Ser., vol. 273, Cambridge Univ. Press, Cambridge, 1999, 95-139.doi: 10.1017/CBO9780511566165.007.


    M. S. Ashbaugh and R. Benguria, Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature, J. Lond. Math. Soc. (2), 52 (1995), 402-416.doi: 10.1112/jlms/52.2.402.


    C. Bandle, Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics 7, Pitman, Boston, Mass.-London, 1980.


    R. Benguria and H. Linde, A second eigenvalue bound for the Dirichlet Schrödinger operator, Comm. Math. Phys., 267 (2006), 741-755.doi: 10.1007/s00220-006-0041-1.


    M. F. Betta, F. Brock, A. Mercaldo and M. R. Posteraro, Weighted isoperimetric inequalities on $\mathbbR^n$ and applications to rearrangements, Math. Nachr., 281 (2008), 466-498.doi: 10.1002/mana.200510619.


    B. Brandolini, F. Chiacchio, D. Krejčiřík and C. Trombetti, The equality case in a Poincaré-Wirtinger type inequality, arXiv:1410.0676.


    B. Brandolini, F. Chiacchio, A. Henrot A. and C. Trombetti, Existence of minimizers for eigenvalues of the Dirichlet-Laplacian with a drift, J. Differential Equations, 259 (2015), 708-727.doi: 10.1016/j.jde.2015.02.028.


    L. Brasco, C. Nitsch and C. Trombetti, An inequality à la Szegö-Weinberger for the $p-$Laplacian on convex sets, Commun. Contemp. Math., to appear. DOI: 10.1142/S0219199715500868


    F. Brock, F. Chiacchio and A. Mercaldo, Weighted isoperimetric inequalities in cones and applications, Nonlinear Anal., 75 (2012), 5737-5755.doi: 10.1016/j.na.2012.05.011.


    F. Brock, A. Mercaldo and M. R. Posteraro, On isoperimetric inequalities with respect to infinite measures, Rev. Mat. Iberoam., 29 (2013), 665-690.doi: 10.4171/RMI/734.


    I. Chavel, Lowest-eigenvalue inequalities, in Proc. Sympos. Pure Math., XXXVI, Geometry of the Laplace operator, pp. 79-89, Amer. Math. Soc., Providence, R.I., (1980).


    I. Chavel, Eigenvalues in Riemannian Geometry, New York, Academic Press, 2001.


    F. Chiacchio and G. di Blasio, Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space, Ann. I. H. Poincaré -AN, 29 (2012), 199-216.doi: 10.1016/j.anihpc.2011.10.002.


    K. M. Chong and N. M. Rice, Equimeasurable rearrangements of functions, in Queen's Papers in Pure and Applied Mathematics, No. 28, Queen's University, (1971).


    R. Courant and D. Hilbert, Methods of Mathematical Physics vol. I and II, Interscience Publichers New York-London, 1966.


    F. Della Pietra and N. Gavitone, Faber-Krahn inequality for anisotropic eigenvalue problems with robin boundary conditions, Potential Analysis, 41 (2014), 1147-1166.doi: 10.1007/s11118-014-9412-y.


    F. Della Pietra and N. Gavitone, Stability results for some fully nonlinear eigenvalue estimates, Communications in Contemporary Mathematics, 16 (2014) 1350039 (23 pages).doi: 10.1142/S0219199713500399.


    A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.


    A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications, vol. 48, Springer, Berlin, 2005.doi: 10.1007/3-540-37689-5.


    B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics 1150. New York: Springer Verlag, 1985.


    S. Kesavan, Symmetrization & Applications, Series in Analysis, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.doi: 10.1142/9789812773937.


    E. T. Kornhauser and I. Stakgold, A variational theorem for $\nabla ^{2}u+\lambda u =0 $ and its applications, J. Math. Phys., 31 (1952), 45-54.


    R. S. Laugesen and B. A. Siudeja, Maximizing Neumann fundamental tones of triangles, J. Math. Phys., 50 (2009), 112903, 18 pp.doi: 10.1063/1.3246834.


    C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, 17, Springer-Verlag, Berlin-New York 1966.


    Y. Naito and T. Suzuki, Radial symmetry of self-similar solutions for semilinear heat equations, J. Differential Equations, 163 (2000), 407-428.doi: 10.1006/jdeq.1999.3742.


    J. M. Rakotoson and B. Simon, Relative rearrangement on a measure space application to the regularuty of weighted monotone rearrangement, I, II, Appl. Math. Lett., 6 (1993), 75-78, 79-82.doi: 10.1016/0893-9659(93)90152-D.


    G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal., 3 (1954), 343-356.


    M. E. Taylor, Partial Differential Equations Vol.II, Qualitative Studies of Linear Equations. Appl. Math. Sciences 116, Springer, N.Y. (1996).doi: 10.1007/978-1-4757-4187-2.


    H. F. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal., 5 (1956), 633-636.

  • 加载中

Article Metrics

HTML views() PDF downloads(272) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint