January  2016, 15(1): 41-55. doi: 10.3934/cpaa.2016.15.41

Large time behavior of solutions for a nonlinear damped wave equation

1. 

Fukuoka Institute of Technology, Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295

Received  October 2014 Revised  September 2015 Published  December 2015

We study the large time behavior of small solutions to the Cauchy problem for a nonlinear damped wave equation. We proved that the solution is approximated by the Gauss kernel with suitable choice of the coefficients and powers of $t$ for $N+1$ th order for all $N \in \mathbb{N}$. Our analysis is based on the approximation theorem of the linear solution by the solution of the heat equation [37]. In particular, as pointed out by Galley-Raugel [4], we explicitly observe that from third order expansion, the asymptotic behavior of the solutions of a nonlinear damped wave equation is different from that of a nonlinear heat equation.
Citation: Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41
References:
[1]

H. Bellout and A. Friedman, Blow-up estimates for a nonlinear hyperbolic heat equation,, \emph{SIAM J. Math. Anal.}, 20 (1989), 354.  doi: 10.1137/0520022.  Google Scholar

[2]

W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation,, \emph{Funkcial. Ekvac.}, 38 (1995), 545.   Google Scholar

[3]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, \emph{J. Fac. Sci. Univ. Tokyo Sect. I}, 12 (1966), 109.   Google Scholar

[4]

Th. Gallay and G. Raugel, Scaling variables and asymptotic expansions in damped wave equations,, \emph{J. Differential Equations}, 150 (1998), 42.  doi: 10.1006/jdeq.1998.3459.  Google Scholar

[5]

M-H. Giga, Y. Giga and J. Saal, Nonlinear partial differential equations, Asymptotic behavior of solutions and self-similar solutions,, \emph{Progress in Nonlinear Differential Equations and their Applications}, (2010).  doi: 10.1007/978-0-8176-4651-6.  Google Scholar

[6]

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations,, \emph{Proc. Japan Acad.}, 49 (1973), 503.   Google Scholar

[7]

N. Hayashi, E. Kaikina and PI Naumkin, Damped wave equation with super critical nonlinearities,, \emph{Differential Integral Equations}, 17 (2004), 637.   Google Scholar

[8]

N, Hayashi, E. Kaikina and PI Naumkin, Damped wave equation with a critical nonlinearity,, \emph{Trans. Amer. Math. Soc.}, 358 (2006), 1165.  doi: 10.1090/S0002-9947-05-03818-3.  Google Scholar

[9]

N. Hayashi, E. Kaikina and PI Naumkin, On the critical nonlinear damped wave equation with large initial data,, \emph{J. Math. Anal. Appl.}, 334 (2007), 1400.  doi: 10.1016/j.jmaa.2007.01.021.  Google Scholar

[10]

F. Hirosawa and J. Wirth, $C^m$-theory of damped wave equations with stabilisation,, \emph{J. Math. Anal. Appl.}, 343 (2008), 1022.  doi: 10.1016/j.jmaa.2008.02.024.  Google Scholar

[11]

T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of 2-dimensional nonlinear damped wave equations,, \emph{J. Differential Equations}, 203 (2004), 82.  doi: 10.1016/j.jde.2004.03.034.  Google Scholar

[12]

K. Ishige and T. Kawakami, Refined asymptotic profiles for a semilinear heat equation,, \emph{Math. Ann.}, 353 (2012), 161.  doi: 10.1007/s00208-011-0677-9.  Google Scholar

[13]

R. Ikehata, T. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^n$ with lower power nonlinearities,, \emph{J. Math. Soc. Japan}, 56 (2004), 365.  doi: 10.2969/jmsj/1191418635.  Google Scholar

[14]

R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear wave equations in $\mathbbR^N$ with non-compactly supported initial data,, \emph{Nonlinear Anal. T.M.A.}, 61 (2005), 1189.  doi: 10.1016/j.na.2005.01.097.  Google Scholar

[15]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, \emph{Studia Math.}, 143 (2000), 175.   Google Scholar

[16]

T. Kawakami and Y. Ueda, Asymptotic profiles to the solutions for a nonlinear damped wave equations,, \emph{Differential Integral Equations}, 26 (2013), 781.   Google Scholar

[17]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, \emph{J. Math. Soc. Japan}, 47 (1995), 617.  doi: 10.2969/jmsj/04740617.  Google Scholar

[18]

T-T. Li, Nonlinear heat conduction with finite speed of propagation,, in \emph{Proceedings of the China-Japan Symposium on Reaction-Diffusion Equations and their Applications an Computational Aspect} World Sci. Publ., (1997), 81.   Google Scholar

[19]

T-T. Li and Y. Zhou, Breakdown of solutions to $\square u + u_t = | u|^{1 + \alpha}$,, \emph{Discrete Contin. Dynam. Syst.}, 1 (1995), 503.  doi: 10.3934/dcds.1995.1.503.  Google Scholar

[20]

P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to compressible flow through porous media,, \emph{J. Differential Equations}, 191 (2003), 445.  doi: 10.1016/S0022-0396(03)00026-3.  Google Scholar

[21]

A. Matsumura, On the asymptotic behavior of solutions of semilinear wave equations,, \emph{Publ. Res. Inst. Sci. Kyoto Univ.}, 12 (1976), 169.   Google Scholar

[22]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, \emph{Math. Z.}, 214 (1993), 325.  doi: 10.1007/BF02572407.  Google Scholar

[23]

T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem,, \emph{J. Math. Soc. Japan}, 56 (2004), 585.  doi: 10.2969/jmsj/1191418647.  Google Scholar

[24]

T. Narazaki, Global solutions to the Cauchy problem for a system of damped wave equations,, \emph{Differential Integral Equations}, 24 (2011), 569.   Google Scholar

[25]

K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application,, \emph{Math. Z.}, 244 (2003), 631.   Google Scholar

[26]

K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system,, \emph{Osaka J. Math.}, 49 (2012), 331.   Google Scholar

[27]

K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption,, \emph{J. Math. Anal. Appl.}, 313 (2006), 598.  doi: 10.1016/j.jmaa.2005.08.059.  Google Scholar

[28]

T. Ogawa and H. Takeda, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains,, \emph{Nonlinear Anal. T.M.A.}, 70 (2009), 3696.  doi: 10.1016/j.na.2008.07.025.  Google Scholar

[29]

T. Ogawa and H. Takeda, Global existence of solutions for a system of nonlinear damped wave equations,, \emph{Differential Integral Equations}, 23 (2010), 635.   Google Scholar

[30]

T. Ogawa and H. Takeda, Large time behavior of solutions for a system of nonlinear damped wave equations,, \emph{J. Differential Equations}, 251 (2011), 3090.  doi: 10.1016/j.jde.2011.07.034.  Google Scholar

[31]

K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations,, \emph{Discrete Contin. Dynam. Systems}, 9 (2003), 651.  doi: 10.3934/dcds.2003.9.651.  Google Scholar

[32]

R. Orive, E. Zuazua and A. Pazoto, Asymptotic expansion for damped wave equations with periodic coefficients,, \emph{Math. Models Methods Appl. Sci.}, 11 (2001), 1285.  doi: 10.1142/S0218202501001331.  Google Scholar

[33]

R. Racke, Decay rates for solutions of damped systems and generalized Fourier transforms,, \emph{J. Reine Angew. Math.}, 412 (1990), 1.  doi: 10.1515/crll.1990.412.1.  Google Scholar

[34]

P. Radu, G. Todorova and B. Yordanov, Higher order energy decay rates for damped wave equations with variable coefficients,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 2 (2009), 609.  doi: 10.3934/dcdss.2009.2.609.  Google Scholar

[35]

F. Sun and M. Wang, Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping,, \emph{Nonlinear Anal. T.M.A.}, 66 (2007), 2889.  doi: 10.1016/j.na.2006.04.012.  Google Scholar

[36]

H. Takeda, Global existence and nonexistence of solutions for a system of nonlinear damped wave equations,, \emph{J. Math. Anal. Appl.}, 360 (2009), 631.  doi: 10.1016/j.jmaa.2009.06.072.  Google Scholar

[37]

H. Takeda, Higher-order expansion of solutions for a damped wave equation,, \emph{Asymptot. Anal.}, (2015), 1.   Google Scholar

[38]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, \emph{J. Differential Equations}, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[39]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, \emph{Israel J. Math.}, 38 (1981), 29.  doi: 10.1007/BF02761845.  Google Scholar

[40]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, \emph{C. R. Acad. Sci. Paris Ser. I Math.}, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

show all references

References:
[1]

H. Bellout and A. Friedman, Blow-up estimates for a nonlinear hyperbolic heat equation,, \emph{SIAM J. Math. Anal.}, 20 (1989), 354.  doi: 10.1137/0520022.  Google Scholar

[2]

W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation,, \emph{Funkcial. Ekvac.}, 38 (1995), 545.   Google Scholar

[3]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, \emph{J. Fac. Sci. Univ. Tokyo Sect. I}, 12 (1966), 109.   Google Scholar

[4]

Th. Gallay and G. Raugel, Scaling variables and asymptotic expansions in damped wave equations,, \emph{J. Differential Equations}, 150 (1998), 42.  doi: 10.1006/jdeq.1998.3459.  Google Scholar

[5]

M-H. Giga, Y. Giga and J. Saal, Nonlinear partial differential equations, Asymptotic behavior of solutions and self-similar solutions,, \emph{Progress in Nonlinear Differential Equations and their Applications}, (2010).  doi: 10.1007/978-0-8176-4651-6.  Google Scholar

[6]

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations,, \emph{Proc. Japan Acad.}, 49 (1973), 503.   Google Scholar

[7]

N. Hayashi, E. Kaikina and PI Naumkin, Damped wave equation with super critical nonlinearities,, \emph{Differential Integral Equations}, 17 (2004), 637.   Google Scholar

[8]

N, Hayashi, E. Kaikina and PI Naumkin, Damped wave equation with a critical nonlinearity,, \emph{Trans. Amer. Math. Soc.}, 358 (2006), 1165.  doi: 10.1090/S0002-9947-05-03818-3.  Google Scholar

[9]

N. Hayashi, E. Kaikina and PI Naumkin, On the critical nonlinear damped wave equation with large initial data,, \emph{J. Math. Anal. Appl.}, 334 (2007), 1400.  doi: 10.1016/j.jmaa.2007.01.021.  Google Scholar

[10]

F. Hirosawa and J. Wirth, $C^m$-theory of damped wave equations with stabilisation,, \emph{J. Math. Anal. Appl.}, 343 (2008), 1022.  doi: 10.1016/j.jmaa.2008.02.024.  Google Scholar

[11]

T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of 2-dimensional nonlinear damped wave equations,, \emph{J. Differential Equations}, 203 (2004), 82.  doi: 10.1016/j.jde.2004.03.034.  Google Scholar

[12]

K. Ishige and T. Kawakami, Refined asymptotic profiles for a semilinear heat equation,, \emph{Math. Ann.}, 353 (2012), 161.  doi: 10.1007/s00208-011-0677-9.  Google Scholar

[13]

R. Ikehata, T. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^n$ with lower power nonlinearities,, \emph{J. Math. Soc. Japan}, 56 (2004), 365.  doi: 10.2969/jmsj/1191418635.  Google Scholar

[14]

R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear wave equations in $\mathbbR^N$ with non-compactly supported initial data,, \emph{Nonlinear Anal. T.M.A.}, 61 (2005), 1189.  doi: 10.1016/j.na.2005.01.097.  Google Scholar

[15]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, \emph{Studia Math.}, 143 (2000), 175.   Google Scholar

[16]

T. Kawakami and Y. Ueda, Asymptotic profiles to the solutions for a nonlinear damped wave equations,, \emph{Differential Integral Equations}, 26 (2013), 781.   Google Scholar

[17]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, \emph{J. Math. Soc. Japan}, 47 (1995), 617.  doi: 10.2969/jmsj/04740617.  Google Scholar

[18]

T-T. Li, Nonlinear heat conduction with finite speed of propagation,, in \emph{Proceedings of the China-Japan Symposium on Reaction-Diffusion Equations and their Applications an Computational Aspect} World Sci. Publ., (1997), 81.   Google Scholar

[19]

T-T. Li and Y. Zhou, Breakdown of solutions to $\square u + u_t = | u|^{1 + \alpha}$,, \emph{Discrete Contin. Dynam. Syst.}, 1 (1995), 503.  doi: 10.3934/dcds.1995.1.503.  Google Scholar

[20]

P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to compressible flow through porous media,, \emph{J. Differential Equations}, 191 (2003), 445.  doi: 10.1016/S0022-0396(03)00026-3.  Google Scholar

[21]

A. Matsumura, On the asymptotic behavior of solutions of semilinear wave equations,, \emph{Publ. Res. Inst. Sci. Kyoto Univ.}, 12 (1976), 169.   Google Scholar

[22]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, \emph{Math. Z.}, 214 (1993), 325.  doi: 10.1007/BF02572407.  Google Scholar

[23]

T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem,, \emph{J. Math. Soc. Japan}, 56 (2004), 585.  doi: 10.2969/jmsj/1191418647.  Google Scholar

[24]

T. Narazaki, Global solutions to the Cauchy problem for a system of damped wave equations,, \emph{Differential Integral Equations}, 24 (2011), 569.   Google Scholar

[25]

K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application,, \emph{Math. Z.}, 244 (2003), 631.   Google Scholar

[26]

K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system,, \emph{Osaka J. Math.}, 49 (2012), 331.   Google Scholar

[27]

K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption,, \emph{J. Math. Anal. Appl.}, 313 (2006), 598.  doi: 10.1016/j.jmaa.2005.08.059.  Google Scholar

[28]

T. Ogawa and H. Takeda, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains,, \emph{Nonlinear Anal. T.M.A.}, 70 (2009), 3696.  doi: 10.1016/j.na.2008.07.025.  Google Scholar

[29]

T. Ogawa and H. Takeda, Global existence of solutions for a system of nonlinear damped wave equations,, \emph{Differential Integral Equations}, 23 (2010), 635.   Google Scholar

[30]

T. Ogawa and H. Takeda, Large time behavior of solutions for a system of nonlinear damped wave equations,, \emph{J. Differential Equations}, 251 (2011), 3090.  doi: 10.1016/j.jde.2011.07.034.  Google Scholar

[31]

K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations,, \emph{Discrete Contin. Dynam. Systems}, 9 (2003), 651.  doi: 10.3934/dcds.2003.9.651.  Google Scholar

[32]

R. Orive, E. Zuazua and A. Pazoto, Asymptotic expansion for damped wave equations with periodic coefficients,, \emph{Math. Models Methods Appl. Sci.}, 11 (2001), 1285.  doi: 10.1142/S0218202501001331.  Google Scholar

[33]

R. Racke, Decay rates for solutions of damped systems and generalized Fourier transforms,, \emph{J. Reine Angew. Math.}, 412 (1990), 1.  doi: 10.1515/crll.1990.412.1.  Google Scholar

[34]

P. Radu, G. Todorova and B. Yordanov, Higher order energy decay rates for damped wave equations with variable coefficients,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 2 (2009), 609.  doi: 10.3934/dcdss.2009.2.609.  Google Scholar

[35]

F. Sun and M. Wang, Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping,, \emph{Nonlinear Anal. T.M.A.}, 66 (2007), 2889.  doi: 10.1016/j.na.2006.04.012.  Google Scholar

[36]

H. Takeda, Global existence and nonexistence of solutions for a system of nonlinear damped wave equations,, \emph{J. Math. Anal. Appl.}, 360 (2009), 631.  doi: 10.1016/j.jmaa.2009.06.072.  Google Scholar

[37]

H. Takeda, Higher-order expansion of solutions for a damped wave equation,, \emph{Asymptot. Anal.}, (2015), 1.   Google Scholar

[38]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, \emph{J. Differential Equations}, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[39]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, \emph{Israel J. Math.}, 38 (1981), 29.  doi: 10.1007/BF02761845.  Google Scholar

[40]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, \emph{C. R. Acad. Sci. Paris Ser. I Math.}, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[18]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]