January  2016, 15(1): 41-55. doi: 10.3934/cpaa.2016.15.41

Large time behavior of solutions for a nonlinear damped wave equation

1. 

Fukuoka Institute of Technology, Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295

Received  October 2014 Revised  September 2015 Published  December 2015

We study the large time behavior of small solutions to the Cauchy problem for a nonlinear damped wave equation. We proved that the solution is approximated by the Gauss kernel with suitable choice of the coefficients and powers of $t$ for $N+1$ th order for all $N \in \mathbb{N}$. Our analysis is based on the approximation theorem of the linear solution by the solution of the heat equation [37]. In particular, as pointed out by Galley-Raugel [4], we explicitly observe that from third order expansion, the asymptotic behavior of the solutions of a nonlinear damped wave equation is different from that of a nonlinear heat equation.
Citation: Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41
References:
[1]

H. Bellout and A. Friedman, Blow-up estimates for a nonlinear hyperbolic heat equation,, \emph{SIAM J. Math. Anal.}, 20 (1989), 354.  doi: 10.1137/0520022.  Google Scholar

[2]

W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation,, \emph{Funkcial. Ekvac.}, 38 (1995), 545.   Google Scholar

[3]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, \emph{J. Fac. Sci. Univ. Tokyo Sect. I}, 12 (1966), 109.   Google Scholar

[4]

Th. Gallay and G. Raugel, Scaling variables and asymptotic expansions in damped wave equations,, \emph{J. Differential Equations}, 150 (1998), 42.  doi: 10.1006/jdeq.1998.3459.  Google Scholar

[5]

M-H. Giga, Y. Giga and J. Saal, Nonlinear partial differential equations, Asymptotic behavior of solutions and self-similar solutions,, \emph{Progress in Nonlinear Differential Equations and their Applications}, (2010).  doi: 10.1007/978-0-8176-4651-6.  Google Scholar

[6]

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations,, \emph{Proc. Japan Acad.}, 49 (1973), 503.   Google Scholar

[7]

N. Hayashi, E. Kaikina and PI Naumkin, Damped wave equation with super critical nonlinearities,, \emph{Differential Integral Equations}, 17 (2004), 637.   Google Scholar

[8]

N, Hayashi, E. Kaikina and PI Naumkin, Damped wave equation with a critical nonlinearity,, \emph{Trans. Amer. Math. Soc.}, 358 (2006), 1165.  doi: 10.1090/S0002-9947-05-03818-3.  Google Scholar

[9]

N. Hayashi, E. Kaikina and PI Naumkin, On the critical nonlinear damped wave equation with large initial data,, \emph{J. Math. Anal. Appl.}, 334 (2007), 1400.  doi: 10.1016/j.jmaa.2007.01.021.  Google Scholar

[10]

F. Hirosawa and J. Wirth, $C^m$-theory of damped wave equations with stabilisation,, \emph{J. Math. Anal. Appl.}, 343 (2008), 1022.  doi: 10.1016/j.jmaa.2008.02.024.  Google Scholar

[11]

T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of 2-dimensional nonlinear damped wave equations,, \emph{J. Differential Equations}, 203 (2004), 82.  doi: 10.1016/j.jde.2004.03.034.  Google Scholar

[12]

K. Ishige and T. Kawakami, Refined asymptotic profiles for a semilinear heat equation,, \emph{Math. Ann.}, 353 (2012), 161.  doi: 10.1007/s00208-011-0677-9.  Google Scholar

[13]

R. Ikehata, T. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^n$ with lower power nonlinearities,, \emph{J. Math. Soc. Japan}, 56 (2004), 365.  doi: 10.2969/jmsj/1191418635.  Google Scholar

[14]

R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear wave equations in $\mathbbR^N$ with non-compactly supported initial data,, \emph{Nonlinear Anal. T.M.A.}, 61 (2005), 1189.  doi: 10.1016/j.na.2005.01.097.  Google Scholar

[15]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, \emph{Studia Math.}, 143 (2000), 175.   Google Scholar

[16]

T. Kawakami and Y. Ueda, Asymptotic profiles to the solutions for a nonlinear damped wave equations,, \emph{Differential Integral Equations}, 26 (2013), 781.   Google Scholar

[17]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, \emph{J. Math. Soc. Japan}, 47 (1995), 617.  doi: 10.2969/jmsj/04740617.  Google Scholar

[18]

T-T. Li, Nonlinear heat conduction with finite speed of propagation,, in \emph{Proceedings of the China-Japan Symposium on Reaction-Diffusion Equations and their Applications an Computational Aspect} World Sci. Publ., (1997), 81.   Google Scholar

[19]

T-T. Li and Y. Zhou, Breakdown of solutions to $\square u + u_t = | u|^{1 + \alpha}$,, \emph{Discrete Contin. Dynam. Syst.}, 1 (1995), 503.  doi: 10.3934/dcds.1995.1.503.  Google Scholar

[20]

P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to compressible flow through porous media,, \emph{J. Differential Equations}, 191 (2003), 445.  doi: 10.1016/S0022-0396(03)00026-3.  Google Scholar

[21]

A. Matsumura, On the asymptotic behavior of solutions of semilinear wave equations,, \emph{Publ. Res. Inst. Sci. Kyoto Univ.}, 12 (1976), 169.   Google Scholar

[22]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, \emph{Math. Z.}, 214 (1993), 325.  doi: 10.1007/BF02572407.  Google Scholar

[23]

T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem,, \emph{J. Math. Soc. Japan}, 56 (2004), 585.  doi: 10.2969/jmsj/1191418647.  Google Scholar

[24]

T. Narazaki, Global solutions to the Cauchy problem for a system of damped wave equations,, \emph{Differential Integral Equations}, 24 (2011), 569.   Google Scholar

[25]

K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application,, \emph{Math. Z.}, 244 (2003), 631.   Google Scholar

[26]

K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system,, \emph{Osaka J. Math.}, 49 (2012), 331.   Google Scholar

[27]

K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption,, \emph{J. Math. Anal. Appl.}, 313 (2006), 598.  doi: 10.1016/j.jmaa.2005.08.059.  Google Scholar

[28]

T. Ogawa and H. Takeda, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains,, \emph{Nonlinear Anal. T.M.A.}, 70 (2009), 3696.  doi: 10.1016/j.na.2008.07.025.  Google Scholar

[29]

T. Ogawa and H. Takeda, Global existence of solutions for a system of nonlinear damped wave equations,, \emph{Differential Integral Equations}, 23 (2010), 635.   Google Scholar

[30]

T. Ogawa and H. Takeda, Large time behavior of solutions for a system of nonlinear damped wave equations,, \emph{J. Differential Equations}, 251 (2011), 3090.  doi: 10.1016/j.jde.2011.07.034.  Google Scholar

[31]

K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations,, \emph{Discrete Contin. Dynam. Systems}, 9 (2003), 651.  doi: 10.3934/dcds.2003.9.651.  Google Scholar

[32]

R. Orive, E. Zuazua and A. Pazoto, Asymptotic expansion for damped wave equations with periodic coefficients,, \emph{Math. Models Methods Appl. Sci.}, 11 (2001), 1285.  doi: 10.1142/S0218202501001331.  Google Scholar

[33]

R. Racke, Decay rates for solutions of damped systems and generalized Fourier transforms,, \emph{J. Reine Angew. Math.}, 412 (1990), 1.  doi: 10.1515/crll.1990.412.1.  Google Scholar

[34]

P. Radu, G. Todorova and B. Yordanov, Higher order energy decay rates for damped wave equations with variable coefficients,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 2 (2009), 609.  doi: 10.3934/dcdss.2009.2.609.  Google Scholar

[35]

F. Sun and M. Wang, Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping,, \emph{Nonlinear Anal. T.M.A.}, 66 (2007), 2889.  doi: 10.1016/j.na.2006.04.012.  Google Scholar

[36]

H. Takeda, Global existence and nonexistence of solutions for a system of nonlinear damped wave equations,, \emph{J. Math. Anal. Appl.}, 360 (2009), 631.  doi: 10.1016/j.jmaa.2009.06.072.  Google Scholar

[37]

H. Takeda, Higher-order expansion of solutions for a damped wave equation,, \emph{Asymptot. Anal.}, (2015), 1.   Google Scholar

[38]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, \emph{J. Differential Equations}, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[39]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, \emph{Israel J. Math.}, 38 (1981), 29.  doi: 10.1007/BF02761845.  Google Scholar

[40]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, \emph{C. R. Acad. Sci. Paris Ser. I Math.}, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

show all references

References:
[1]

H. Bellout and A. Friedman, Blow-up estimates for a nonlinear hyperbolic heat equation,, \emph{SIAM J. Math. Anal.}, 20 (1989), 354.  doi: 10.1137/0520022.  Google Scholar

[2]

W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation,, \emph{Funkcial. Ekvac.}, 38 (1995), 545.   Google Scholar

[3]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, \emph{J. Fac. Sci. Univ. Tokyo Sect. I}, 12 (1966), 109.   Google Scholar

[4]

Th. Gallay and G. Raugel, Scaling variables and asymptotic expansions in damped wave equations,, \emph{J. Differential Equations}, 150 (1998), 42.  doi: 10.1006/jdeq.1998.3459.  Google Scholar

[5]

M-H. Giga, Y. Giga and J. Saal, Nonlinear partial differential equations, Asymptotic behavior of solutions and self-similar solutions,, \emph{Progress in Nonlinear Differential Equations and their Applications}, (2010).  doi: 10.1007/978-0-8176-4651-6.  Google Scholar

[6]

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations,, \emph{Proc. Japan Acad.}, 49 (1973), 503.   Google Scholar

[7]

N. Hayashi, E. Kaikina and PI Naumkin, Damped wave equation with super critical nonlinearities,, \emph{Differential Integral Equations}, 17 (2004), 637.   Google Scholar

[8]

N, Hayashi, E. Kaikina and PI Naumkin, Damped wave equation with a critical nonlinearity,, \emph{Trans. Amer. Math. Soc.}, 358 (2006), 1165.  doi: 10.1090/S0002-9947-05-03818-3.  Google Scholar

[9]

N. Hayashi, E. Kaikina and PI Naumkin, On the critical nonlinear damped wave equation with large initial data,, \emph{J. Math. Anal. Appl.}, 334 (2007), 1400.  doi: 10.1016/j.jmaa.2007.01.021.  Google Scholar

[10]

F. Hirosawa and J. Wirth, $C^m$-theory of damped wave equations with stabilisation,, \emph{J. Math. Anal. Appl.}, 343 (2008), 1022.  doi: 10.1016/j.jmaa.2008.02.024.  Google Scholar

[11]

T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of 2-dimensional nonlinear damped wave equations,, \emph{J. Differential Equations}, 203 (2004), 82.  doi: 10.1016/j.jde.2004.03.034.  Google Scholar

[12]

K. Ishige and T. Kawakami, Refined asymptotic profiles for a semilinear heat equation,, \emph{Math. Ann.}, 353 (2012), 161.  doi: 10.1007/s00208-011-0677-9.  Google Scholar

[13]

R. Ikehata, T. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^n$ with lower power nonlinearities,, \emph{J. Math. Soc. Japan}, 56 (2004), 365.  doi: 10.2969/jmsj/1191418635.  Google Scholar

[14]

R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear wave equations in $\mathbbR^N$ with non-compactly supported initial data,, \emph{Nonlinear Anal. T.M.A.}, 61 (2005), 1189.  doi: 10.1016/j.na.2005.01.097.  Google Scholar

[15]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, \emph{Studia Math.}, 143 (2000), 175.   Google Scholar

[16]

T. Kawakami and Y. Ueda, Asymptotic profiles to the solutions for a nonlinear damped wave equations,, \emph{Differential Integral Equations}, 26 (2013), 781.   Google Scholar

[17]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, \emph{J. Math. Soc. Japan}, 47 (1995), 617.  doi: 10.2969/jmsj/04740617.  Google Scholar

[18]

T-T. Li, Nonlinear heat conduction with finite speed of propagation,, in \emph{Proceedings of the China-Japan Symposium on Reaction-Diffusion Equations and their Applications an Computational Aspect} World Sci. Publ., (1997), 81.   Google Scholar

[19]

T-T. Li and Y. Zhou, Breakdown of solutions to $\square u + u_t = | u|^{1 + \alpha}$,, \emph{Discrete Contin. Dynam. Syst.}, 1 (1995), 503.  doi: 10.3934/dcds.1995.1.503.  Google Scholar

[20]

P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to compressible flow through porous media,, \emph{J. Differential Equations}, 191 (2003), 445.  doi: 10.1016/S0022-0396(03)00026-3.  Google Scholar

[21]

A. Matsumura, On the asymptotic behavior of solutions of semilinear wave equations,, \emph{Publ. Res. Inst. Sci. Kyoto Univ.}, 12 (1976), 169.   Google Scholar

[22]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, \emph{Math. Z.}, 214 (1993), 325.  doi: 10.1007/BF02572407.  Google Scholar

[23]

T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem,, \emph{J. Math. Soc. Japan}, 56 (2004), 585.  doi: 10.2969/jmsj/1191418647.  Google Scholar

[24]

T. Narazaki, Global solutions to the Cauchy problem for a system of damped wave equations,, \emph{Differential Integral Equations}, 24 (2011), 569.   Google Scholar

[25]

K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application,, \emph{Math. Z.}, 244 (2003), 631.   Google Scholar

[26]

K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system,, \emph{Osaka J. Math.}, 49 (2012), 331.   Google Scholar

[27]

K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption,, \emph{J. Math. Anal. Appl.}, 313 (2006), 598.  doi: 10.1016/j.jmaa.2005.08.059.  Google Scholar

[28]

T. Ogawa and H. Takeda, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains,, \emph{Nonlinear Anal. T.M.A.}, 70 (2009), 3696.  doi: 10.1016/j.na.2008.07.025.  Google Scholar

[29]

T. Ogawa and H. Takeda, Global existence of solutions for a system of nonlinear damped wave equations,, \emph{Differential Integral Equations}, 23 (2010), 635.   Google Scholar

[30]

T. Ogawa and H. Takeda, Large time behavior of solutions for a system of nonlinear damped wave equations,, \emph{J. Differential Equations}, 251 (2011), 3090.  doi: 10.1016/j.jde.2011.07.034.  Google Scholar

[31]

K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations,, \emph{Discrete Contin. Dynam. Systems}, 9 (2003), 651.  doi: 10.3934/dcds.2003.9.651.  Google Scholar

[32]

R. Orive, E. Zuazua and A. Pazoto, Asymptotic expansion for damped wave equations with periodic coefficients,, \emph{Math. Models Methods Appl. Sci.}, 11 (2001), 1285.  doi: 10.1142/S0218202501001331.  Google Scholar

[33]

R. Racke, Decay rates for solutions of damped systems and generalized Fourier transforms,, \emph{J. Reine Angew. Math.}, 412 (1990), 1.  doi: 10.1515/crll.1990.412.1.  Google Scholar

[34]

P. Radu, G. Todorova and B. Yordanov, Higher order energy decay rates for damped wave equations with variable coefficients,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 2 (2009), 609.  doi: 10.3934/dcdss.2009.2.609.  Google Scholar

[35]

F. Sun and M. Wang, Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping,, \emph{Nonlinear Anal. T.M.A.}, 66 (2007), 2889.  doi: 10.1016/j.na.2006.04.012.  Google Scholar

[36]

H. Takeda, Global existence and nonexistence of solutions for a system of nonlinear damped wave equations,, \emph{J. Math. Anal. Appl.}, 360 (2009), 631.  doi: 10.1016/j.jmaa.2009.06.072.  Google Scholar

[37]

H. Takeda, Higher-order expansion of solutions for a damped wave equation,, \emph{Asymptot. Anal.}, (2015), 1.   Google Scholar

[38]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, \emph{J. Differential Equations}, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[39]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, \emph{Israel J. Math.}, 38 (1981), 29.  doi: 10.1007/BF02761845.  Google Scholar

[40]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, \emph{C. R. Acad. Sci. Paris Ser. I Math.}, 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[1]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[2]

Ryo Ikehata, Marina Soga. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1759-1780. doi: 10.3934/cpaa.2015.14.1759

[3]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[4]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[5]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[6]

Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 351-392. doi: 10.3934/dcds.2004.11.351

[7]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[8]

M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215

[9]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[10]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[11]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[12]

Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

[13]

Todor Gramchev, Nicola Orrú. Cauchy problem for a class of nondiagonalizable hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 533-542. doi: 10.3934/proc.2011.2011.533

[14]

Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

[15]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[16]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[17]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[18]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[19]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[20]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]