Citation: |
[1] |
X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. |
[2] |
W. Choi, S. Kim and K. A. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, J. Funct. Anal., 266 (2014), 6531-6598. |
[3] |
X. Chang and Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations, 256 (2014), 2956-2992. |
[4] |
G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 2359-2376. |
[5] |
J. Dávila, M. Del Pino and J. Wei, Concentration standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892. |
[6] |
S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201-216. |
[7] |
B. Feng, Ground states for the fractional nonlinear Schrödinger equation, J. Differential Equations, 127 (2013), 1-11. |
[8] |
Rupert Frank, Enno Lenzmann and Luis Silvestre, Uniqueness and nondegeneracy of ground states for $(-\Delta)^sQ + Q - Q^{\alpha+1} = 0$ in $R$, Acta Math., 210 (2013), 261-318. |
[9] |
Rupert Frank and Enno Lenzmann, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., DOI: 10.1002/cpa.21591 |
[10] |
P. Felmer, A. Quass and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262. |
[11] |
N. Laskin, Fractional quantum mechanics and L'evy path integrals, Phys. Lett. A, 268 (2000), 29-305. |
[12] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 31-35. |
[13] |
L. Lin, Z. Liu and S. Chen, Multi-bump solutions for a semilinear Schrödinger equation, Phys. Rev. E, 58 (2009), 1659-1689. |
[14] |
W. Long, S. Peng and J. Yang, Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations, Discret. Contin. Dynam. Syst., 36 (2016), 917-939. |
[15] |
E. S. Noussair and S. Yan, On positive multi-peak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000), 213-227. |
[16] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. |
[17] |
G. Palatucci and A. Pisante, Improved sobolev embeddings, profile decomposition and concentration-compactness for fractional sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829. |
[18] |
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $R^N$, J. Math. Phys., 54 (2013), 031501, 17 pp. |
[19] |
X. Shang and J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differ. Equ., 258 (2015), 1106-1128. |
[20] |
J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 42 (2011), 21-41. |
[21] |
L. Wang and C. Zhao, Infinitely many solutions to a fractional nonlinear Schrödinger equation, arXiv:1403.0042. |