\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$

Abstract Related Papers Cited by
  • In this paper, we study a fractional nonlinear Schrödinger equation. Applying the finite reduction method, we prove that the equation has multi-bump positive solutions under some suitable conditions which are given in section 1.
    Mathematics Subject Classification: Primary: 35J10, 35B99; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.

    [2]

    W. Choi, S. Kim and K. A. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, J. Funct. Anal., 266 (2014), 6531-6598.

    [3]

    X. Chang and Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations, 256 (2014), 2956-2992.

    [4]

    G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 2359-2376.

    [5]

    J. Dávila, M. Del Pino and J. Wei, Concentration standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.

    [6]

    S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201-216.

    [7]

    B. Feng, Ground states for the fractional nonlinear Schrödinger equation, J. Differential Equations, 127 (2013), 1-11.

    [8]

    Rupert Frank, Enno Lenzmann and Luis Silvestre, Uniqueness and nondegeneracy of ground states for $(-\Delta)^sQ + Q - Q^{\alpha+1} = 0$ in $R$, Acta Math., 210 (2013), 261-318.

    [9]

    Rupert Frank and Enno Lenzmann, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., DOI: 10.1002/cpa.21591

    [10]

    P. Felmer, A. Quass and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.

    [11]

    N. Laskin, Fractional quantum mechanics and L'evy path integrals, Phys. Lett. A, 268 (2000), 29-305.

    [12]

    N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 31-35.

    [13]

    L. Lin, Z. Liu and S. Chen, Multi-bump solutions for a semilinear Schrödinger equation, Phys. Rev. E, 58 (2009), 1659-1689.

    [14]

    W. Long, S. Peng and J. Yang, Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations, Discret. Contin. Dynam. Syst., 36 (2016), 917-939.

    [15]

    E. S. Noussair and S. Yan, On positive multi-peak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000), 213-227.

    [16]

    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.

    [17]

    G. Palatucci and A. Pisante, Improved sobolev embeddings, profile decomposition and concentration-compactness for fractional sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.

    [18]

    S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $R^N$, J. Math. Phys., 54 (2013), 031501, 17 pp.

    [19]

    X. Shang and J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differ. Equ., 258 (2015), 1106-1128.

    [20]

    J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 42 (2011), 21-41.

    [21]

    L. Wang and C. Zhao, Infinitely many solutions to a fractional nonlinear Schrödinger equation, arXiv:1403.0042.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(198) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return