March  2016, 15(2): 457-475. doi: 10.3934/cpaa.2016.15.457

Competing interactions and traveling wave solutions in lattice differential equations

1. 

Department of Mathematics, University of Kansas, Lawrence, KS 66045, United States

2. 

Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, United States

Received  March 2015 Revised  November 2015 Published  January 2016

The existence of traveling front solutions to bistable lattice differential equations in the absence of a comparison principle is studied. The results are in the spirit of those in Bates, Chen, and Chmaj [1], but are applicable to vector equations and to more general limiting systems. An abstract result on the persistence of traveling wave solutions is obtained and is then applied to lattice differential equations with repelling first and/or second neighbor interactions and to some problems with infinite range interactions.
Citation: E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457
References:
[1]

P. W. Bates, X. F. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice,, \emph{SIAM J. Math. Anal.}, 35 (2003), 520.  doi: 10.1137/S0036141000374002.  Google Scholar

[2]

M. Brucal - Hallare and E.S. Van Vleck, Traveling fronts in an antidiffusion lattice Nagumo model,, \emph{SIAM J. Appl. Dyn. Sys.}, 10 (2011), 921.  doi: 10.1137/100819461.  Google Scholar

[3]

J. W. Cahn, J. Mallet-Paret and E. S. Van Vleck, Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice,, \emph{SIAM J. Appl. Math.}, 59 (1999), 455.  doi: 10.1137/S0036139996312703.  Google Scholar

[4]

X. F. Chen, J. S. Guo and C. C. Wu, Traveling waves in discrete periodic media for bistable dynamics,, \emph{Arch. Ration. Mech. Anal.}, 189 (2008), 189.  doi: 10.1007/s00205-007-0103-3.  Google Scholar

[5]

S. N. Chow, J. Mallet-Paret and W. X. Shen, Traveling waves in lattice dynamical systems,, \emph{J. Differential Equations}, 149 (1998), 248.  doi: 10.1006/jdeq.1998.3478.  Google Scholar

[6]

J. Harterich, B. Sandstede and A. Scheel, Exponential dichotomies for linear non-autonomous functional differential equations of mixed type,, \emph{Indiana Univ. Math. J.}, 51 (2002), 1081.  doi: 10.1512/iumj.2002.51.2188.  Google Scholar

[7]

H. J. Hupkes and S. M. Verduyn-Lunel, Analysis of Newton's method to compute travelling waves in discrete media,, \emph{J. Dynam. Differential Equations}, 17 (2005), 523.  doi: 10.1007/s10884-005-5809-z.  Google Scholar

[8]

H. J. Hupkes and S. M. Verduyn-Lunel, Center manifold theory for functional differential equations of mixed type,, \emph{J. Dynam. Diff. Eqns.}, 19 (2007), 497.  doi: 10.1007/s10884-006-9055-9.  Google Scholar

[9]

H. J. Hupkes and S. M. Verduyn-Lunel, Lin's method and homoclinic bifurcations for functional differential equations of mixed type,, \emph{Indiana Univ. Math. J.}, 58 (2009), 2433.  doi: 10.1512/iumj.2009.58.3661.  Google Scholar

[10]

H. J. Hupkes and B. Sandstede, Traveling pulse solutions for the discrete FitzHugh-Nagumo system,, \emph{SIAM J. Appl. Dyn. Syst.}, 9 (2010), 827.  doi: 10.1137/090771740.  Google Scholar

[11]

H. J. Hupkes and E. S. Van Vleck, Negative diffusion and traveling waves in high dimensional lattice systems,, \emph{SIAM J. Math. Anal.}, 45 (2013), 1068.  doi: 10.1137/120880628.  Google Scholar

[12]

C. Lamb and E. S. Van Vleck, Neutral mixed type functional differential equations,, \emph{J. Dynam. Differential Equations}, (2015).   Google Scholar

[13]

J. Mallet-Paret and S. M. Verduyn-Lunel, Exponential dichotomies and Wiener-Hopf factorizations for mixed-type functional differential equations,, \emph{J. of Differential Equations}, ().   Google Scholar

[14]

J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type,, \emph{J. Dynamics and Differential Equations}, 11 (1999), 1.  doi: 10.1023/A:1021889401235.  Google Scholar

[15]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems,, \emph{J. Dyn. Diff. Eqn.}, 11 (1999), 49.  doi: 10.1023/A:1021841618074.  Google Scholar

[16]

J. Mallet-Paret, Traveling waves in spatially-discrete dynamical systems of diffusive type,, \emph{Lecture Notes in Math}, 1822 (2003), 231.  doi: 10.1007/978-3-540-45204-1_4.  Google Scholar

[17]

A. Rustichini, Functional-differential equations of mixed type: the linear autonomous case,, \emph{J. Dynam. Differential Equations}, 1 (1989), 121.  doi: 10.1007/BF01047828.  Google Scholar

[18]

A. Rustichini, Hopf bifurcation for functional-differential equations of mixed type,, \emph{J. Dynam. Differential Equations}, 1 (1989), 145.  doi: 10.1007/BF01047829.  Google Scholar

[19]

W. Shen, Travelling waves in time almost periodic structures governed by bistable nonlinearities: I. Stability and uniqueness,, \emph{J. Differential Equations}, 159 (1999), 1.  doi: 10.1006/jdeq.1999.3651.  Google Scholar

[20]

W. Shen, Travelling waves in time almost periodic structures governed by bistable nonlinearities: II. Existence,, \emph{J. Differential Equations}, 159 (1999), 55.  doi: 10.1006/jdeq.1999.3652.  Google Scholar

[21]

A. Vainchtein and E. S. Van Vleck, Nucleation and propagation of phase mixtures in a bistable chain,, \emph{Phys. Rev. B.}, 79 (2009).   Google Scholar

[22]

A. Vainchtein, E. S. Van Vleck and A. Zhang, Propagation of periodic patterns in a discrete system with competing interactions,, \emph{SIAM J. Appl. Dyn. Sys.}, 14 (2015), 523.   Google Scholar

[23]

B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation,, \emph{SIAM J. Math. Anal.}, 22 (1991), 1016.  doi: 10.1137/0522066.  Google Scholar

[24]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, \emph{J. Diff. Eqn}, 96 (1992), 1.  doi: 10.1016/0022-0396(92)90142-A.  Google Scholar

show all references

References:
[1]

P. W. Bates, X. F. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice,, \emph{SIAM J. Math. Anal.}, 35 (2003), 520.  doi: 10.1137/S0036141000374002.  Google Scholar

[2]

M. Brucal - Hallare and E.S. Van Vleck, Traveling fronts in an antidiffusion lattice Nagumo model,, \emph{SIAM J. Appl. Dyn. Sys.}, 10 (2011), 921.  doi: 10.1137/100819461.  Google Scholar

[3]

J. W. Cahn, J. Mallet-Paret and E. S. Van Vleck, Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice,, \emph{SIAM J. Appl. Math.}, 59 (1999), 455.  doi: 10.1137/S0036139996312703.  Google Scholar

[4]

X. F. Chen, J. S. Guo and C. C. Wu, Traveling waves in discrete periodic media for bistable dynamics,, \emph{Arch. Ration. Mech. Anal.}, 189 (2008), 189.  doi: 10.1007/s00205-007-0103-3.  Google Scholar

[5]

S. N. Chow, J. Mallet-Paret and W. X. Shen, Traveling waves in lattice dynamical systems,, \emph{J. Differential Equations}, 149 (1998), 248.  doi: 10.1006/jdeq.1998.3478.  Google Scholar

[6]

J. Harterich, B. Sandstede and A. Scheel, Exponential dichotomies for linear non-autonomous functional differential equations of mixed type,, \emph{Indiana Univ. Math. J.}, 51 (2002), 1081.  doi: 10.1512/iumj.2002.51.2188.  Google Scholar

[7]

H. J. Hupkes and S. M. Verduyn-Lunel, Analysis of Newton's method to compute travelling waves in discrete media,, \emph{J. Dynam. Differential Equations}, 17 (2005), 523.  doi: 10.1007/s10884-005-5809-z.  Google Scholar

[8]

H. J. Hupkes and S. M. Verduyn-Lunel, Center manifold theory for functional differential equations of mixed type,, \emph{J. Dynam. Diff. Eqns.}, 19 (2007), 497.  doi: 10.1007/s10884-006-9055-9.  Google Scholar

[9]

H. J. Hupkes and S. M. Verduyn-Lunel, Lin's method and homoclinic bifurcations for functional differential equations of mixed type,, \emph{Indiana Univ. Math. J.}, 58 (2009), 2433.  doi: 10.1512/iumj.2009.58.3661.  Google Scholar

[10]

H. J. Hupkes and B. Sandstede, Traveling pulse solutions for the discrete FitzHugh-Nagumo system,, \emph{SIAM J. Appl. Dyn. Syst.}, 9 (2010), 827.  doi: 10.1137/090771740.  Google Scholar

[11]

H. J. Hupkes and E. S. Van Vleck, Negative diffusion and traveling waves in high dimensional lattice systems,, \emph{SIAM J. Math. Anal.}, 45 (2013), 1068.  doi: 10.1137/120880628.  Google Scholar

[12]

C. Lamb and E. S. Van Vleck, Neutral mixed type functional differential equations,, \emph{J. Dynam. Differential Equations}, (2015).   Google Scholar

[13]

J. Mallet-Paret and S. M. Verduyn-Lunel, Exponential dichotomies and Wiener-Hopf factorizations for mixed-type functional differential equations,, \emph{J. of Differential Equations}, ().   Google Scholar

[14]

J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type,, \emph{J. Dynamics and Differential Equations}, 11 (1999), 1.  doi: 10.1023/A:1021889401235.  Google Scholar

[15]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems,, \emph{J. Dyn. Diff. Eqn.}, 11 (1999), 49.  doi: 10.1023/A:1021841618074.  Google Scholar

[16]

J. Mallet-Paret, Traveling waves in spatially-discrete dynamical systems of diffusive type,, \emph{Lecture Notes in Math}, 1822 (2003), 231.  doi: 10.1007/978-3-540-45204-1_4.  Google Scholar

[17]

A. Rustichini, Functional-differential equations of mixed type: the linear autonomous case,, \emph{J. Dynam. Differential Equations}, 1 (1989), 121.  doi: 10.1007/BF01047828.  Google Scholar

[18]

A. Rustichini, Hopf bifurcation for functional-differential equations of mixed type,, \emph{J. Dynam. Differential Equations}, 1 (1989), 145.  doi: 10.1007/BF01047829.  Google Scholar

[19]

W. Shen, Travelling waves in time almost periodic structures governed by bistable nonlinearities: I. Stability and uniqueness,, \emph{J. Differential Equations}, 159 (1999), 1.  doi: 10.1006/jdeq.1999.3651.  Google Scholar

[20]

W. Shen, Travelling waves in time almost periodic structures governed by bistable nonlinearities: II. Existence,, \emph{J. Differential Equations}, 159 (1999), 55.  doi: 10.1006/jdeq.1999.3652.  Google Scholar

[21]

A. Vainchtein and E. S. Van Vleck, Nucleation and propagation of phase mixtures in a bistable chain,, \emph{Phys. Rev. B.}, 79 (2009).   Google Scholar

[22]

A. Vainchtein, E. S. Van Vleck and A. Zhang, Propagation of periodic patterns in a discrete system with competing interactions,, \emph{SIAM J. Appl. Dyn. Sys.}, 14 (2015), 523.   Google Scholar

[23]

B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation,, \emph{SIAM J. Math. Anal.}, 22 (1991), 1016.  doi: 10.1137/0522066.  Google Scholar

[24]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, \emph{J. Diff. Eqn}, 96 (1992), 1.  doi: 10.1016/0022-0396(92)90142-A.  Google Scholar

[1]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[15]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[16]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]