March  2016, 15(2): 507-517. doi: 10.3934/cpaa.2016.15.507

Local regularity of the magnetohydrodynamics equations near the curved boundary

1. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea

Received  April 2015 Revised  October 2015 Published  January 2016

We study a local regularity condition for a suitable weak solutions of the magnetohydrodynamics equations near the curved boundary.
Citation: Jae-Myoung  Kim. Local regularity of the magnetohydrodynamics equations near the curved boundary. Communications on Pure & Applied Analysis, 2016, 15 (2) : 507-517. doi: 10.3934/cpaa.2016.15.507
References:
[1]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, \emph{Comm. Pure Appl. Math.}, 35 (1982), 771. doi: 10.1002/cpa.3160350604. Google Scholar

[2]

P. A. Davidson, An Introduction to Magnetohydrodynamics,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511626333. Google Scholar

[3]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, (French) [In\'equations en thermo\'elasticit\'e et magn\'etohydrodynamique], 46 (1972), 241. Google Scholar

[4]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, \emph{J. Funct. Anal.}, 227 (2005), 113. doi: 10.1016/j.jfa.2005.06.009. Google Scholar

[5]

K. Kang and J. Lee, Interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations,, \emph{J. Differential Equations}, 247 (2009), 2310. doi: 10.1016/j.jde.2009.07.016. Google Scholar

[6]

K. Kang and J.-M. Kim, Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations,, \emph{J. Funct. Anal.}, 266 (2014), 99. doi: 10.1016/j.jfa.2013.09.007. Google Scholar

[7]

J. Kim and M. Kim, Local regularity of the Navier-Stokes equations near the curved boundary,, \emph{J. Math. Anal. Appl.}, 363 (2010), 161. doi: 10.1016/j.jmaa.2009.08.015. Google Scholar

[8]

O. A. Ladyžhenskaya and V. A. Solonnikov, Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid (in Russian),, \emph{Proceedings of V.A. Steklov Mathematical Institute}, 59 (1960), 115. Google Scholar

[9]

F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. Google Scholar

[10]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 635. doi: 10.1002/cpa.3160360506. Google Scholar

[11]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations,, \emph{Pacific J. Math.}, 66 (1976), 535. Google Scholar

[12]

V. Scheffer, The Navier-Stokes equations on a bounded domain,, \emph{Comm. Math. Phys.}, 73 (1980), 1. Google Scholar

[13]

G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations,, \emph{Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)}, 271 (2000), 204. doi: 10.1023/A:1023330105200. Google Scholar

[14]

V. Vyalov, Partial regularity of solutions to the magnetohydrodynamic equations,, \emph{J. Math. Sci. (N. Y.)}, 150 (2008), 1771. doi: 10.1007/s10958-008-0095-z. Google Scholar

[15]

V. Vyalov, On the boundary regularity of weak solutions to the MHD system,, \emph{Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)} \textbf{385} (2010), 385 (2010), 18. doi: 10.1007/s10958-011-0545-x. Google Scholar

[16]

V. Vyalov, On the local smoothness of weak solutions to the MHD system near the boundary,, \emph{Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)}, 397 (2011), 5. doi: 10.1007/s10958-012-0950-9. Google Scholar

[17]

V. Vyalov and T. Shilkin, Estimates of solutions to the perturbed Stokes system,, \emph{Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)}, 410 (2013), 5. Google Scholar

[18]

W. Wang and Z. Zhang, On the interior regularity criteria for suitable weak solutions of the Magneto-hydrodynamics equations,, \emph{SIAM J. Math. Anal.}, 45 (2013), 2666. doi: 10.1137/120879646. Google Scholar

show all references

References:
[1]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, \emph{Comm. Pure Appl. Math.}, 35 (1982), 771. doi: 10.1002/cpa.3160350604. Google Scholar

[2]

P. A. Davidson, An Introduction to Magnetohydrodynamics,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511626333. Google Scholar

[3]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, (French) [In\'equations en thermo\'elasticit\'e et magn\'etohydrodynamique], 46 (1972), 241. Google Scholar

[4]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, \emph{J. Funct. Anal.}, 227 (2005), 113. doi: 10.1016/j.jfa.2005.06.009. Google Scholar

[5]

K. Kang and J. Lee, Interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations,, \emph{J. Differential Equations}, 247 (2009), 2310. doi: 10.1016/j.jde.2009.07.016. Google Scholar

[6]

K. Kang and J.-M. Kim, Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations,, \emph{J. Funct. Anal.}, 266 (2014), 99. doi: 10.1016/j.jfa.2013.09.007. Google Scholar

[7]

J. Kim and M. Kim, Local regularity of the Navier-Stokes equations near the curved boundary,, \emph{J. Math. Anal. Appl.}, 363 (2010), 161. doi: 10.1016/j.jmaa.2009.08.015. Google Scholar

[8]

O. A. Ladyžhenskaya and V. A. Solonnikov, Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid (in Russian),, \emph{Proceedings of V.A. Steklov Mathematical Institute}, 59 (1960), 115. Google Scholar

[9]

F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. Google Scholar

[10]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 635. doi: 10.1002/cpa.3160360506. Google Scholar

[11]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations,, \emph{Pacific J. Math.}, 66 (1976), 535. Google Scholar

[12]

V. Scheffer, The Navier-Stokes equations on a bounded domain,, \emph{Comm. Math. Phys.}, 73 (1980), 1. Google Scholar

[13]

G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations,, \emph{Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)}, 271 (2000), 204. doi: 10.1023/A:1023330105200. Google Scholar

[14]

V. Vyalov, Partial regularity of solutions to the magnetohydrodynamic equations,, \emph{J. Math. Sci. (N. Y.)}, 150 (2008), 1771. doi: 10.1007/s10958-008-0095-z. Google Scholar

[15]

V. Vyalov, On the boundary regularity of weak solutions to the MHD system,, \emph{Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)} \textbf{385} (2010), 385 (2010), 18. doi: 10.1007/s10958-011-0545-x. Google Scholar

[16]

V. Vyalov, On the local smoothness of weak solutions to the MHD system near the boundary,, \emph{Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)}, 397 (2011), 5. doi: 10.1007/s10958-012-0950-9. Google Scholar

[17]

V. Vyalov and T. Shilkin, Estimates of solutions to the perturbed Stokes system,, \emph{Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)}, 410 (2013), 5. Google Scholar

[18]

W. Wang and Z. Zhang, On the interior regularity criteria for suitable weak solutions of the Magneto-hydrodynamics equations,, \emph{SIAM J. Math. Anal.}, 45 (2013), 2666. doi: 10.1137/120879646. Google Scholar

[1]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[2]

Wendong Wang, Liqun Zhang. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1261-1275. doi: 10.3934/dcds.2011.29.1261

[3]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[4]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[5]

Zhen Lei, Yi Zhou. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 575-583. doi: 10.3934/dcds.2009.25.575

[6]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[7]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[8]

Manuel Núñez. Existence of solutions of the equations of electron magnetohydrodynamics in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1019-1034. doi: 10.3934/dcds.2010.26.1019

[9]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[10]

Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015

[11]

Pablo Ochoa, Julio Alejo Ruiz. A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1091-1115. doi: 10.3934/cpaa.2019053

[12]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[13]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[14]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[15]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[16]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[17]

Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132

[18]

Sunra J. N. Mosconi. Optimal elliptic regularity: A comparison between local and nonlocal equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 547-559. doi: 10.3934/dcdss.2018030

[19]

Wanwan Wang, Hongxia Zhang, Huyuan Chen. Remarks on weak solutions of fractional elliptic equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 335-340. doi: 10.3934/cpaa.2016.15.335

[20]

Elder Jesús Villamizar-Roa, Henry Lamos-Díaz, Gilberto Arenas-Díaz. Very weak solutions for the magnetohydrodynamic type equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 957-972. doi: 10.3934/dcdsb.2008.10.957

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]