Citation: |
[1] |
G. Arioli, F. Gazzola, H.-C. Grunau and E. Mitidieri, A semilinear fourth order elliptic problem with exponential nonlinearity, SIAM J. Math. Anal., 36 (2005), 1226-1258.doi: 10.1137/S0036141002418534. |
[2] |
E. Berchio and F. Gazzola, Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities, Electronic Journal of Differential Equations, 34 (2005), pp. 120. |
[3] |
T. Boggio, Sulle funzioni di Green drdine m, Rend. Circ. Mat. Palermo, (1905), 97-135. |
[4] |
H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t - \Delta u = g(u)$ revisited, Adv. Diff. Eq., 1 (1996), 73-90. |
[5] |
H. Brezis and L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469. |
[6] |
X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension four, Comm. Pure Appl. Math., 63 (2010), 1362-1380.doi: 10.1002/cpa.20327. |
[7] |
X. Cabré and A. Capella, Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, J. Funct. Anal., 238 (2006), 709-733.doi: 10.1016/j.jfa.2005.12.018. |
[8] |
D. Cassani, J. M. do O and N. Ghoussoub, On a fourth order elliptic problem with a singular nonlinearity, Adv. Nonlinear Stud., 9 (2009), 177-197. |
[9] |
L. B. Chaabane, On the extremal solutions of semilinear elliptic problems, Abstr. Appl. Anal., 1 (2005), 1-9.doi: 10.1155/AAA.2005.1. |
[10] |
C. Cowan, Regularity of the extremal solutions in a Gelfand system problem, Advanced Nonlinear Studies, 11 (2011), p. 695. |
[11] |
C. Cowan, P. Esposito and N. Ghoussoub, Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains, Discrete Contin. Dyn. Syst., 28 (2010), 1033-1050.doi: 10.3934/dcds.2010.28.1033. |
[12] |
C. Cowan and M. Fazly, Uniqueness of solutions for a nonlocal elliptic eigenvalue problem, Math. Res. Lett., 19 (2012), 613-626.doi: 10.4310/MRL.2012.v19.n3.a9. |
[13] |
M. G. Crandall and P. H. Rabinowitz, Some continuation and variation methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal., 58 (1975), 207-218. |
[14] |
J. Davila, L. Dupaigne, I. Guerra and M. Montenegro, Stable solutions for the bilaplacian with exponential nonlinearity, SIAM J. Math. Anal., 39 (2007), 565-592.doi: 10.1137/060665579. |
[15] |
J. Dolbeault and R. Stanczy, Non-existence and uniqueness results for supercritical semilinear elliptic equations, Ann. Henri Poincare, 10 (2010), 1311-1333,doi: 10.1007/s00023-009-0016-9. |
[16] |
P. Esposito and N. Ghoussoub, Uniqueness of solutions for an elliptic equation modeling MEMS, Methods Appl. Anal., 15 (2008), 341-353.doi: 10.4310/MAA.2008.v15.n3.a6. |
[17] |
P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60 (2007), 1731-1768.doi: 10.1002/cpa.20189. |
[18] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electro MEMS devices: stationary case, SIAM J. Math. Anal., 38 (2007), 1423-1449.doi: 10.1137/050647803. |
[19] |
T. Hashimoto, Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations, Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equaions, May 24-27, 2002, Wilmington, NC, USA, pp 393-402. |
[20] |
X. Luo, Uniqueness of weak extremal solution to biharmonic equation with logarithmically convex nonlinearities, Journal of PDEs, 23 (2010), 315-329. |
[21] |
Y. Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math., 23 (1997), 161-168. |
[22] |
J. McGough, On solution continua of supercritical quasilinear elliptic problems, Differential Integral Equations, 7 (1994), 1453-1471. |
[23] |
J. McGough and J. Mortensen, Pohozaev obstructions on non-starlike domains, Calc. Var. Partial Differential Equations, 18 (2003), 189-205.doi: 10.1007/s00526-002-0188-3. |
[24] |
J. McGough, J. Mortensen, C. Rickett and G. Stubbendieck, Domain geometry and the Pohozaev identity, Electron. J. Differential Equations, 32 (2005), 16 pp. |
[25] |
F. Mignot and J-P. Puel, Sur une classe de problemes non lineaires avec non linearite positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980), 791-836.doi: 10.1080/03605308008820155. |
[26] |
M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.doi: 10.1112/S0024609305004248. |
[27] |
G. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris S. I Math., 330 (2000), 997-1002.doi: 10.1016/S0764-4442(00)00289-5. |
[28] |
R. Schaaf, Uniqueness for semilinear elliptic problems: supercritical growth and domain geometry, Adv. Differential Equations, 5 (2000), 1201-1220. |
[29] |
K. Schmitt, Positive solutions of semilinear elliptic boundary value problems, Topological Methods in Differential Equations and Inclusions (Montreal, PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 472, Kluwer Academic Publishers, Dordrecht, 1995, pp. 447-500. |