• Previous Article
    Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities
  • CPAA Home
  • This Issue
  • Next Article
    Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter
March  2016, 15(2): 535-547. doi: 10.3934/cpaa.2016.15.535

Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well

1. 

Departamento de Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo, Perú, Chile

Received  July 2015 Revised  December 2015 Published  January 2016

In this paper we study the non-linear fractional Schrödinger equation with steep potential well \begin{eqnarray} (-\Delta)^{\alpha}u + \lambda V(x)u = f(x,u)\ in\ R^{n}, \ u\in H^{\alpha}(R^n), \end{eqnarray} where $(-\Delta)^\alpha$ ($\alpha \in (0,1)$) denotes the fractional Laplacian, $\lambda$ is a parameter, $V\in C(\mathbb{R}^n)$ and $V^{-1}(0)$ has nonempty interior. Under some suitable conditions, the existence of nontrivial solutions are obtained by using variational methods. Furthermore, the phenomenon of concentration of solutions is also explored.
Citation: César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535
References:
[1]

T. Bartsch and Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^n$, Commun. in PDE, 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.  Google Scholar

[2]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33 (2013), 7-26.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problems related to the fractional Laplacian, Comm. PDE, 32 (2007), 1245C1260.2. doi: 10.1080/03605300600987306.  Google Scholar

[4]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[5]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilnear equations, Comm. PDE, 36 (2011), 1353C1384. doi: 10.1080/03605302.2011.562954.  Google Scholar

[6]

M. Cheng, Bound state for the fractional Schrödinger equation with undounded potential, J. Math. Phys., 53 (2012), 043507. doi: 10.1063/1.3701574.  Google Scholar

[7]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Comm. Pure Appl. Anal., 13 (2014), 2359-2376. doi: 10.3934/cpaa.2014.13.2359.  Google Scholar

[8]

J. Dávila, M. Del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892. doi: 10.1016/j.jde.2013.10.006.  Google Scholar

[9]

J. Dávila, M. Del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235. doi: 10.2140/apde.2015.8.1165.  Google Scholar

[10]

E. Di Nezza, G. Patalluci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[11]

J. Dong and M.Xu, Some solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys., 48 (2007), 072105. doi: 10.1063/1.2749172.  Google Scholar

[12]

M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961. doi: 10.1088/0951-7715/28/6/1937.  Google Scholar

[13]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.  Google Scholar

[14]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion, Calc. Var., 54 (2015), 75-98. doi: 10.1007/s00526-014-0778-x.  Google Scholar

[15]

P. Felmer and C. Torres, Radial symmetry of ground state for a fractional nonlinear Schrödinger equation, Comm. Pure and Applied Ana., 13 (2014), 2395-2406. doi: 10.3934/cpaa.2014.13.2395.  Google Scholar

[16]

X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104. doi: 10.1063/1.2235026.  Google Scholar

[17]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[18]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[19]

J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74, Springer, Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[20]

E. de Oliveira, F. Costa and J. Vaz, The fractional Schrödinger equation for delta potentials, J. Math. Phys., 51 (2012), 123517. doi: 10.1063/1.3525976.  Google Scholar

[21]

P. Rabinowitz, Minimax method in critical point theory with applications to differential equations, CBMS Amer. Math. Soc., 65, 1986.  Google Scholar

[22]

P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291. doi: 10.1007/BF00946631.  Google Scholar

[23]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  Google Scholar

[25]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501. doi: 10.1063/1.4793990.  Google Scholar

[26]

J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrödinger equations with sublinear nonlinearity,, \emph{arXiv:1502.02221v1}., ().   Google Scholar

show all references

References:
[1]

T. Bartsch and Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^n$, Commun. in PDE, 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.  Google Scholar

[2]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33 (2013), 7-26.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problems related to the fractional Laplacian, Comm. PDE, 32 (2007), 1245C1260.2. doi: 10.1080/03605300600987306.  Google Scholar

[4]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[5]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilnear equations, Comm. PDE, 36 (2011), 1353C1384. doi: 10.1080/03605302.2011.562954.  Google Scholar

[6]

M. Cheng, Bound state for the fractional Schrödinger equation with undounded potential, J. Math. Phys., 53 (2012), 043507. doi: 10.1063/1.3701574.  Google Scholar

[7]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Comm. Pure Appl. Anal., 13 (2014), 2359-2376. doi: 10.3934/cpaa.2014.13.2359.  Google Scholar

[8]

J. Dávila, M. Del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892. doi: 10.1016/j.jde.2013.10.006.  Google Scholar

[9]

J. Dávila, M. Del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235. doi: 10.2140/apde.2015.8.1165.  Google Scholar

[10]

E. Di Nezza, G. Patalluci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[11]

J. Dong and M.Xu, Some solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys., 48 (2007), 072105. doi: 10.1063/1.2749172.  Google Scholar

[12]

M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961. doi: 10.1088/0951-7715/28/6/1937.  Google Scholar

[13]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.  Google Scholar

[14]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion, Calc. Var., 54 (2015), 75-98. doi: 10.1007/s00526-014-0778-x.  Google Scholar

[15]

P. Felmer and C. Torres, Radial symmetry of ground state for a fractional nonlinear Schrödinger equation, Comm. Pure and Applied Ana., 13 (2014), 2395-2406. doi: 10.3934/cpaa.2014.13.2395.  Google Scholar

[16]

X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104. doi: 10.1063/1.2235026.  Google Scholar

[17]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[18]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[19]

J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74, Springer, Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[20]

E. de Oliveira, F. Costa and J. Vaz, The fractional Schrödinger equation for delta potentials, J. Math. Phys., 51 (2012), 123517. doi: 10.1063/1.3525976.  Google Scholar

[21]

P. Rabinowitz, Minimax method in critical point theory with applications to differential equations, CBMS Amer. Math. Soc., 65, 1986.  Google Scholar

[22]

P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291. doi: 10.1007/BF00946631.  Google Scholar

[23]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  Google Scholar

[25]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501. doi: 10.1063/1.4793990.  Google Scholar

[26]

J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrödinger equations with sublinear nonlinearity,, \emph{arXiv:1502.02221v1}., ().   Google Scholar

[1]

Song Peng, Aliang Xia. Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1201-1217. doi: 10.3934/cpaa.2018058

[2]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[3]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[4]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic & Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[5]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1497-1519. doi: 10.3934/cpaa.2021030

[6]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[7]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[8]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[9]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[10]

Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857

[11]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[12]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[13]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

[14]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[15]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[16]

Daniel Morales-Silva, David Yang Gao. Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 271-282. doi: 10.3934/naco.2013.3.271

[17]

Salvatore A. Marano, Sunra J. N. Mosconi. Multiple solutions to elliptic inclusions via critical point theory on closed convex sets. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3087-3102. doi: 10.3934/dcds.2015.35.3087

[18]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293

[19]

Yu Su, Zhaosheng Feng. Ground state solutions for the fractional problems with dipole-type potential and critical exponent. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021111

[20]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]