-
Previous Article
Concentration of solutions for the fractional Nirenberg problem
- CPAA Home
- This Issue
-
Next Article
Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well
Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities
1. | Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271. La Laguna |
2. | Departamento de Análisis Matemático, Universidad de Alicante, Ap 99, 03080, Alicante |
3. | Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 -- La Laguna, Spain |
References:
[1] |
C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. Anal. Math., 58 (1992), 9-24.
doi: 10.1007/BF02790355. |
[2] |
M. F. Bidaut-Véron, M. García-Huidobro and C. Yarur, Keller-Osserman estimates for some quasilinear elliptic systems, Comm. Pure Appl. Anal., 12 (2013) (4), 1547-1568. |
[3] |
M. F. Bidaut-Véron and P. Grillot, Estimations a priori pour les singularitées isolées d'un système elliptique hamiltonien, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 617-622.
doi: 10.1016/S0764-4442(97)84771-4. |
[4] |
M. F. Bidaut-Véron and P. Grillot, Asymptotic behaviour of elliptic systems with mixed absorption and source terms, Asymp. Anal., 19 (1999), 117-147. |
[5] |
M. F. Bidaut-Véron and P. Grillot, Singularities in elliptic systems with absorption terms, Annali Scuola Norm. Sup. Pisa, 28 (1999), 229-271. |
[6] |
H. Brezis and L. Véron, Removable singularities for some nonlinear elliptic equations, Arch. Rat. Mech. Anal., 75 (1980), 1-6.
doi: 10.1007/BF00284616. |
[7] |
F. C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Amer. Math. Soc., 227 (2014), n. 1068. |
[8] |
N. Dancer and Y. Du, Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal., 34 (2002), 292-314.
doi: 10.1137/S0036141001387598. |
[9] |
J. Dávila, L. Dupaigne, O. Goubet and S. Martínez, Boundary blow-up solutions of cooperative systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1767-1791.
doi: 10.1016/j.anihpc.2008.12.003. |
[10] |
J. I. Díaz, M. Lazzo and P. G. Schmidt, Large solutions for a system of elliptic equations arising from fluid dynamics, SIAM J. Math. Anal., 37 (2005), 490-513.
doi: 10.1137/S0036141004443555. |
[11] |
G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonl. Anal., 20 (1993), 97-125.
doi: 10.1016/0362-546X(93)90012-H. |
[12] |
Y. Du, Effects of a degeneracy in the competition model. Part I: classical and generalized steady-state solutions, J. Diff. Eqns., 181 (2002), 92-132.
doi: 10.1006/jdeq.2001.4074. |
[13] |
Y. Du, Effects of a degeneracy in the competition model. Part II: perturbation and dynamical behaviour, J. Diff. Eqns., 181 (2002), 133-164.
doi: 10.1006/jdeq.2001.4075. |
[14] |
M. García-Huidobro and C. Yarur, Classification of positive singular solutions for a class of semilinear elliptic systems, Adv. Diff. Eqns., 2 (1997), 383-402. |
[15] |
J. García-Melián, A remark on uniqueness of large solutions for elliptic systems of competitive type, J. Math. Anal. Appl., 331 (2007), 608-616.
doi: 10.1016/j.jmaa.2006.09.006. |
[16] |
J. García-Melián, Large solutions for an elliptic system of quasilinear equations, J. Diff. Eqns., 245 (2008), 3735-3752.
doi: 10.1016/j.jde.2008.04.004. |
[17] |
J. García-Melián, R. Letelier Albornoz and J. Sabina de Lis, The solvability of an elliptic system under a singular boundary condition, Proc. Roy. Soc. Edinburgh, 136 (2006), 509-546.
doi: 10.1017/S0308210500005047. |
[18] |
J. García-Melián and J. D. Rossi, Boundary blow-up solutions to elliptic systems of competitive type, J. Diff. Eqns., 206 (2004), 156-181.
doi: 10.1016/j.jde.2003.12.004. |
[19] |
J. García-Melián and A. Suárez, Existence and uniqueness of positive large solutions to some cooperative elliptic systems, Adv. Nonl. Stud., 3 (2003), 193-206. |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
doi: 10.1007/978-3-642-61798-0. |
[21] |
J. López-Gómez, Coexistence and metacoexistence for competitive species, Houston J. Math., 29 (2003), 483-536. |
[22] |
V. Rădulescu, Singular phenomena in nonlinear elliptic problems, in Handbook of differential equations; stationary partial differential equations, vol. 4. (ed. M. Chipot), Elsevier, 2007. |
[23] |
L. Véron, Semilinear elliptic equations with uniform blow up on the boundary, J. Anal. Math., 59 (1992), 231-250.
doi: 10.1007/BF02790229. |
show all references
References:
[1] |
C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. Anal. Math., 58 (1992), 9-24.
doi: 10.1007/BF02790355. |
[2] |
M. F. Bidaut-Véron, M. García-Huidobro and C. Yarur, Keller-Osserman estimates for some quasilinear elliptic systems, Comm. Pure Appl. Anal., 12 (2013) (4), 1547-1568. |
[3] |
M. F. Bidaut-Véron and P. Grillot, Estimations a priori pour les singularitées isolées d'un système elliptique hamiltonien, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 617-622.
doi: 10.1016/S0764-4442(97)84771-4. |
[4] |
M. F. Bidaut-Véron and P. Grillot, Asymptotic behaviour of elliptic systems with mixed absorption and source terms, Asymp. Anal., 19 (1999), 117-147. |
[5] |
M. F. Bidaut-Véron and P. Grillot, Singularities in elliptic systems with absorption terms, Annali Scuola Norm. Sup. Pisa, 28 (1999), 229-271. |
[6] |
H. Brezis and L. Véron, Removable singularities for some nonlinear elliptic equations, Arch. Rat. Mech. Anal., 75 (1980), 1-6.
doi: 10.1007/BF00284616. |
[7] |
F. C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Amer. Math. Soc., 227 (2014), n. 1068. |
[8] |
N. Dancer and Y. Du, Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal., 34 (2002), 292-314.
doi: 10.1137/S0036141001387598. |
[9] |
J. Dávila, L. Dupaigne, O. Goubet and S. Martínez, Boundary blow-up solutions of cooperative systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1767-1791.
doi: 10.1016/j.anihpc.2008.12.003. |
[10] |
J. I. Díaz, M. Lazzo and P. G. Schmidt, Large solutions for a system of elliptic equations arising from fluid dynamics, SIAM J. Math. Anal., 37 (2005), 490-513.
doi: 10.1137/S0036141004443555. |
[11] |
G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonl. Anal., 20 (1993), 97-125.
doi: 10.1016/0362-546X(93)90012-H. |
[12] |
Y. Du, Effects of a degeneracy in the competition model. Part I: classical and generalized steady-state solutions, J. Diff. Eqns., 181 (2002), 92-132.
doi: 10.1006/jdeq.2001.4074. |
[13] |
Y. Du, Effects of a degeneracy in the competition model. Part II: perturbation and dynamical behaviour, J. Diff. Eqns., 181 (2002), 133-164.
doi: 10.1006/jdeq.2001.4075. |
[14] |
M. García-Huidobro and C. Yarur, Classification of positive singular solutions for a class of semilinear elliptic systems, Adv. Diff. Eqns., 2 (1997), 383-402. |
[15] |
J. García-Melián, A remark on uniqueness of large solutions for elliptic systems of competitive type, J. Math. Anal. Appl., 331 (2007), 608-616.
doi: 10.1016/j.jmaa.2006.09.006. |
[16] |
J. García-Melián, Large solutions for an elliptic system of quasilinear equations, J. Diff. Eqns., 245 (2008), 3735-3752.
doi: 10.1016/j.jde.2008.04.004. |
[17] |
J. García-Melián, R. Letelier Albornoz and J. Sabina de Lis, The solvability of an elliptic system under a singular boundary condition, Proc. Roy. Soc. Edinburgh, 136 (2006), 509-546.
doi: 10.1017/S0308210500005047. |
[18] |
J. García-Melián and J. D. Rossi, Boundary blow-up solutions to elliptic systems of competitive type, J. Diff. Eqns., 206 (2004), 156-181.
doi: 10.1016/j.jde.2003.12.004. |
[19] |
J. García-Melián and A. Suárez, Existence and uniqueness of positive large solutions to some cooperative elliptic systems, Adv. Nonl. Stud., 3 (2003), 193-206. |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
doi: 10.1007/978-3-642-61798-0. |
[21] |
J. López-Gómez, Coexistence and metacoexistence for competitive species, Houston J. Math., 29 (2003), 483-536. |
[22] |
V. Rădulescu, Singular phenomena in nonlinear elliptic problems, in Handbook of differential equations; stationary partial differential equations, vol. 4. (ed. M. Chipot), Elsevier, 2007. |
[23] |
L. Véron, Semilinear elliptic equations with uniform blow up on the boundary, J. Anal. Math., 59 (1992), 231-250.
doi: 10.1007/BF02790229. |
[1] |
Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure and Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531 |
[2] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[3] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[4] |
Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489 |
[5] |
Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations and Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669 |
[6] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[7] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[8] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[9] |
Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63 |
[10] |
Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828 |
[11] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[12] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[13] |
Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733 |
[14] |
Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure and Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465 |
[15] |
Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271 |
[16] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[17] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[18] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[19] |
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 |
[20] |
Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]