January  2016, 15(1): 57-72. doi: 10.3934/cpaa.2016.15.57

Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  December 2014 Revised  October 2015 Published  December 2015

In this paper, we study the existence of homoclinic solutions to the following second-order Hamiltonian systems \begin{eqnarray} \ddot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0,\quad \forall t\in R, \end{eqnarray} where $L(t)$ is a symmetric and positive definite matrix for all $t\in R$. The nonlinear potential $W$ is a combination of superlinear and sublinear terms. By different conditions on the superlinear and sublinear terms, we obtain existence and nonuniqueness of nontrivial homoclinic solutions to above systems.
Citation: Dong-Lun Wu, Chun-Lei Tang, Xing-Ping Wu. Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (1) : 57-72. doi: 10.3934/cpaa.2016.15.57
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Funct. Anal.}, 14 (1973), 349. Google Scholar

[2]

A. Ambrosetti and V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems,, \emph{Rend. Sem. Mat. Univ. Padova}, 89 (1993), 177. Google Scholar

[3]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0385-8. Google Scholar

[4]

P. C. Carrião and O. H. Miyagaki, Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 230 (1999), 157. doi: 10.1006/jmaa.1998.6184. Google Scholar

[5]

H. W. Chen and Z. M. He, Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems,, \emph{Advances in Difference Equations}, 2014 (2014). Google Scholar

[6]

Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems,, \emph{Nonlinear Anal.}, 25 (1995), 1095. doi: 10.1016/0362-546X(94)00229-B. Google Scholar

[7]

Y. H. Ding and S. J. Li, Homoclinic orbits for first order Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 189 (1995), 585. doi: 10.1006/jmaa.1995.1037. Google Scholar

[8]

P. L. Felmer and Elves A. De B. Silva, Homoclinic and periodic orbits for Hamiltonian systems,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 26 (1998), 285. Google Scholar

[9]

G. H. Fei, The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign,, \emph{Chinese Ann. Math. Ser. B}, 17 (1996), 403. Google Scholar

[10]

P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems,, \emph{Electron. J. Differential Equations}, 1994 (1994), 1. Google Scholar

[11]

S. P. Lu, Homoclinic solutions for a nonlinear second order differential system with p-Laplacian operator,, \emph{Nonlinear Anal. RWA.}, 12 (2011), 525. doi: 10.1016/j.nonrwa.2010.06.037. Google Scholar

[12]

Y. Lv and C.-L. Tang, Homoclinic orbits for second-order Hamiltonian systems with subquadratic potentials,, \emph{Chaos, 57 (2013), 137. doi: 10.1016/j.chaos.2013.09.007. Google Scholar

[13]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Differential and Integral Equations}, 5 (1992), 1115. Google Scholar

[14]

Z.-Q. Ou and C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 291 (2004), 203. doi: 10.1016/j.jmaa.2003.10.026. Google Scholar

[15]

E. Paturel, Multiple homoclinic orbits for a class of Hamiltonian systems,, \emph{Calc. Var. Partial Differential Equations}, 12 (2001), 117. doi: 10.1007/PL00009909. Google Scholar

[16]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, in \emph{CBMS, (1986). Google Scholar

[17]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 114 (1990), 33. doi: 10.1017/S0308210500024240. Google Scholar

[18]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems,, \emph{Math. Z.}, 206 (1991), 473. doi: 10.1007/BF02571356. Google Scholar

[19]

J. Sun, H. Chen and J. J. Nieto, Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 373 (2011), 20. doi: 10.1016/j.jmaa.2010.06.038. Google Scholar

[20]

X. H. Tang and X. Y. Lin, Existence of infinitely many homoclinic orbits in Hamiltonian systems,, \emph{Pro. Roy. Soc. Edin.}, 141 (2011), 1103. doi: 10.1017/S0308210509001346. Google Scholar

[21]

X. H. Tang and X. Y. Lin, Infinitely many homoclinic orbits for Hamiltonian systems with indefinite sign subquadratic potentials,, \emph{Nonlinear Anal.}, 74 (2011), 6314. doi: 10.1016/j.na.2011.06.010. Google Scholar

[22]

L.-L. Wan and C.-L. Tang, Existence of homoclinic orbits for second order Hamiltonian systems without (AR) condition,, \emph{Nonlinear Anal.}, 74 (2011), 5303. doi: 10.1016/j.na.2011.05.011. Google Scholar

[23]

L. Yang, H. Chen and J. Sun, Infinitely many homoclinic solutions for some second order Hamiltonian systems,, \emph{Nonlinear Anal.}, 74 (2011), 6459. doi: 10.1016/j.na.2011.06.029. Google Scholar

[24]

Y. W. Y and C.-L. Tang, Multiple homoclinic solutions for second-order perturbed Hamiltonian systems,, \emph{Studies in Applied Mathematics}, 132 (2014), 112. doi: 10.1111/sapm.12023. Google Scholar

[25]

R. Yuan and Z. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems,, \emph{Results in Math.}, 61 (2012), 195. doi: 10.1007/s00025-010-0088-3. Google Scholar

[26]

M.-H Yang and Z.-Q. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities,, \emph{Nonlinear Anal.}, 74 (2011), 2635. doi: 10.1016/j.na.2010.12.019. Google Scholar

[27]

Z. Zhang, X. Tian and R. Yuan, Homoclinic solutions for subquadratic Hamiltonian systems without coercive conditions,, \emph{Taiwanese J. Math.}, 18 (2014), 1089. doi: 10.11650/tjm.18.2014.3508. Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Funct. Anal.}, 14 (1973), 349. Google Scholar

[2]

A. Ambrosetti and V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems,, \emph{Rend. Sem. Mat. Univ. Padova}, 89 (1993), 177. Google Scholar

[3]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0385-8. Google Scholar

[4]

P. C. Carrião and O. H. Miyagaki, Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 230 (1999), 157. doi: 10.1006/jmaa.1998.6184. Google Scholar

[5]

H. W. Chen and Z. M. He, Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems,, \emph{Advances in Difference Equations}, 2014 (2014). Google Scholar

[6]

Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems,, \emph{Nonlinear Anal.}, 25 (1995), 1095. doi: 10.1016/0362-546X(94)00229-B. Google Scholar

[7]

Y. H. Ding and S. J. Li, Homoclinic orbits for first order Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 189 (1995), 585. doi: 10.1006/jmaa.1995.1037. Google Scholar

[8]

P. L. Felmer and Elves A. De B. Silva, Homoclinic and periodic orbits for Hamiltonian systems,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 26 (1998), 285. Google Scholar

[9]

G. H. Fei, The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign,, \emph{Chinese Ann. Math. Ser. B}, 17 (1996), 403. Google Scholar

[10]

P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems,, \emph{Electron. J. Differential Equations}, 1994 (1994), 1. Google Scholar

[11]

S. P. Lu, Homoclinic solutions for a nonlinear second order differential system with p-Laplacian operator,, \emph{Nonlinear Anal. RWA.}, 12 (2011), 525. doi: 10.1016/j.nonrwa.2010.06.037. Google Scholar

[12]

Y. Lv and C.-L. Tang, Homoclinic orbits for second-order Hamiltonian systems with subquadratic potentials,, \emph{Chaos, 57 (2013), 137. doi: 10.1016/j.chaos.2013.09.007. Google Scholar

[13]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Differential and Integral Equations}, 5 (1992), 1115. Google Scholar

[14]

Z.-Q. Ou and C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 291 (2004), 203. doi: 10.1016/j.jmaa.2003.10.026. Google Scholar

[15]

E. Paturel, Multiple homoclinic orbits for a class of Hamiltonian systems,, \emph{Calc. Var. Partial Differential Equations}, 12 (2001), 117. doi: 10.1007/PL00009909. Google Scholar

[16]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, in \emph{CBMS, (1986). Google Scholar

[17]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 114 (1990), 33. doi: 10.1017/S0308210500024240. Google Scholar

[18]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems,, \emph{Math. Z.}, 206 (1991), 473. doi: 10.1007/BF02571356. Google Scholar

[19]

J. Sun, H. Chen and J. J. Nieto, Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 373 (2011), 20. doi: 10.1016/j.jmaa.2010.06.038. Google Scholar

[20]

X. H. Tang and X. Y. Lin, Existence of infinitely many homoclinic orbits in Hamiltonian systems,, \emph{Pro. Roy. Soc. Edin.}, 141 (2011), 1103. doi: 10.1017/S0308210509001346. Google Scholar

[21]

X. H. Tang and X. Y. Lin, Infinitely many homoclinic orbits for Hamiltonian systems with indefinite sign subquadratic potentials,, \emph{Nonlinear Anal.}, 74 (2011), 6314. doi: 10.1016/j.na.2011.06.010. Google Scholar

[22]

L.-L. Wan and C.-L. Tang, Existence of homoclinic orbits for second order Hamiltonian systems without (AR) condition,, \emph{Nonlinear Anal.}, 74 (2011), 5303. doi: 10.1016/j.na.2011.05.011. Google Scholar

[23]

L. Yang, H. Chen and J. Sun, Infinitely many homoclinic solutions for some second order Hamiltonian systems,, \emph{Nonlinear Anal.}, 74 (2011), 6459. doi: 10.1016/j.na.2011.06.029. Google Scholar

[24]

Y. W. Y and C.-L. Tang, Multiple homoclinic solutions for second-order perturbed Hamiltonian systems,, \emph{Studies in Applied Mathematics}, 132 (2014), 112. doi: 10.1111/sapm.12023. Google Scholar

[25]

R. Yuan and Z. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems,, \emph{Results in Math.}, 61 (2012), 195. doi: 10.1007/s00025-010-0088-3. Google Scholar

[26]

M.-H Yang and Z.-Q. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities,, \emph{Nonlinear Anal.}, 74 (2011), 2635. doi: 10.1016/j.na.2010.12.019. Google Scholar

[27]

Z. Zhang, X. Tian and R. Yuan, Homoclinic solutions for subquadratic Hamiltonian systems without coercive conditions,, \emph{Taiwanese J. Math.}, 18 (2014), 1089. doi: 10.11650/tjm.18.2014.3508. Google Scholar

[1]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[2]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

[3]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[4]

C. Rebelo. Multiple periodic solutions of second order equations with asymmetric nonlinearities. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 25-34. doi: 10.3934/dcds.1997.3.25

[5]

Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467

[6]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[7]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[8]

Li-Li Wan, Chun-Lei Tang. Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 255-271. doi: 10.3934/dcdsb.2011.15.255

[9]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

[10]

Xiangjin Xu. Multiple solutions of super-quadratic second order dynamical systems. Conference Publications, 2003, 2003 (Special) : 926-934. doi: 10.3934/proc.2003.2003.926

[11]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

[12]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[13]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[14]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[15]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[16]

Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75

[17]

Florian Schneider. Second-order mixed-moment model with differentiable ansatz function in slab geometry. Kinetic & Related Models, 2018, 11 (5) : 1255-1276. doi: 10.3934/krm.2018049

[18]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[19]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[20]

Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]