Advanced Search
Article Contents
Article Contents

Non-sharp travelling waves for a dual porous medium equation

Abstract Related Papers Cited by
  • We discuss non-sharp travelling waves of a dual porous medium equation with monostable source and bistable source respectively. We show the existence of non-sharp travelling waves and find that though the equation is degenerate, the travelling waves are classical ones. Furthermore, for the monostable source, we show that the non-sharp travelling waves are infinite, while for the bistable source, the non-sharp travelling waves are semi-finite, which is in contrast with the case of the heat equation.
    Mathematics Subject Classification: Primary: 35K65, 35K40.


    \begin{equation} \\ \end{equation}
  • [1]

    D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76.doi: 10.1016/0001-8708(78)90130-5.


    Ph. Bénilan and K. S. Ha, Equation d'évolution du type $(du/dt) +\beta\delta\Phi_\varepsilon(u) \ni 0$ dans $L^\infty(\Omega)$, Comptes Rendus Acad. Sci. Paris, A, 281 (1975), 947-950.


    G. Duvaut and J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.


    R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 353-369.


    V. A. Galaktionov, Geometric sturmian theory of nonlinear parabolic equations with applications, Chapman $&$ Hall, 2005.doi: 10.1201/9780203998069.


    K. S. Ha, Sur des semigroups non linéaires dans les espaces $L^\infty(\Omega)$, J. Math. Soc. Japan, 31 (1979), 593-622.doi: 10.2969/jmsj/03140593.


    S. L. Kamenomostskaya (Kamin), On the Stefan Problem, Mat. Sbornik, 53 (1961), 489-514.


    A. Kolmogorov, I. Petrovsky and N. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probleme biologique, Bull. Univ. Moskov Ser. Internat. Sec. Math., 1 (1937), 1-25.


    Y. Konishi, On the nonlinear semi-groups associated with $u_t=\Delta\beta(u)$ and $\Phi_\varepsilon(u_t)=\Delta u$, J. Math. Soc. Japan, 25 (1973), 622-628.


    P. L. Lions, Some problems related to the Bellman-Dirichlet equation for two operators, Comm. Partial Differential Equations, 5 (1980), 753-771.doi: 10.1080/03605308008820153.


    L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations, J. Differential Equations, 195 (2003), 471-496.doi: 10.1016/j.jde.2003.06.005.


    M. Mei, C. -K. Lin, C. -T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (I) local nonlinearity, J. Differential Equations, 247 (2009), 495-510.doi: 10.1016/j.jde.2008.12.026.


    M. Mei, C. -K. Lin, C. -T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (II) nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529.doi: 10.1016/j.jde.2008.12.020.


    O. A. Oleinik, A. S. Kalashnikov and Chzhou Yui-Lin, The Cauchy problem and boundary-value problems for equations of unsteady filtration type, Izv. Akad. Nauk SSSR, Ser. Mat., 22 (1958), 667-704.


    A. D. Pablo and A. Sánchez, Global travelling waves in reaction-convection-diffusion equations, J. Differential Equations, 165 (2000), 377-413.doi: 10.1006/jdeq.2000.3781.


    A. D. Pablo and J. L. Vazquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.doi: 10.1016/0022-0396(91)90021-Z.


    J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure:(I) Traveling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A, 457 (2001), 1841-1853.doi: 10.1098/rspa.2001.0789.


    J. W.-H. So and X. Zou, Traveling waves for the diffusive Nicholson's blowflies equation, Appl. Math. Comput., 22 (2001), 385-392.doi: 10.1016/S0096-3003(00)00055-2.


    W. Strauss, Evolution equations non-linear in the time-derivative, Jour. Math. Mech., 15 (1966), 49-82.


    C. P. Wang and J. X. Yin, Travelling wave fronts of a degenerate parabolic equation with non-divergence form, J. PDEs, 16 (2003), 62-74.


    J. X. Yin and C. H. Jin, Travelling wavefronts for a non-divergent degenerate and singular parabolic equation with changing sign sources, Proceedings of the Royal Society of Edinburgh, 139A (2009), 1179-1207.doi: 10.1017/S0308210508000231.


    J. X. Yin, J. Li and C. H. Jin, Classical solutions for a class of fully nonlinear degenerate parabolic equations, J. Math. Anal. Appl., 360 (2009), 119-129.doi: 10.1016/j.jmaa.2009.06.038.

  • 加载中

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint