March  2016, 15(2): 637-655. doi: 10.3934/cpaa.2016.15.637

Asymptotic analysis of a spatially and size-structured population model with delayed birth process

1. 

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China

2. 

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241

Received  March 2015 Revised  November 2015 Published  January 2016

This paper is devoted to the study of a spatially and size-structured population dynamics model with delayed birth process. Our focus is on the asymptotic behavior of the system, in particular on the effect of the spatial location and the time lag on the long-term dynamics. To this end, within a semigroup framework, we derive the locally asymptotic stability and asynchrony results respectively for the considered population system under some conditions. For our discussion, we use the approaches concerning operator matrices, Hille-Yosida operators, spectral analysis as well as Perron-Frobenius theory. We also do two numerical simulations to illustrate the obtained stability and asynchrony results.
Citation: Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637
References:
[1]

D. M. Auslander, G. F. Oster and C. B. Huffaker, Dynamics of interacting populations,, \emph{J. Franklin Inst.}, 297 (1974), 345.   Google Scholar

[2]

A. Bátkai and S. Piazzera, Semigroups and linear partial differential equations with delay,, \emph{J. Math. Anal. Appl.}, 264 (2001), 1.  doi: 10.1006/jmaa.2001.6705.  Google Scholar

[3]

M. Boulanouar, The asymptotic behavior of a structured cell population,, \emph{J. Evol. Equ.}, 11 (2011), 531.  doi: 10.1007/s00028-011-0100-8.  Google Scholar

[4]

G. Di Blasio, Nonlinear age-dependent population growth with history-dependent birth rate,, \emph{Math. Biosci.}, 46 (1979), 279.  doi: 10.1016/0025-5564(79)90073-7.  Google Scholar

[5]

O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars,, \emph{SIAM J. Math. Anal., 39 (2007), 1023.  doi: 10.1137/060659211.  Google Scholar

[6]

O. Diekmann and M. Gyllenberg, Abstract delay equations inspired by population dynamics,, \emph{Fun. Anal. Evol. Eq.}, 47 (2008), 187.  doi: 10.1007/978-3-7643-7794-6_12.  Google Scholar

[7]

K. J. Engel, Operator matrices and systems of evolution equations,, \emph{RIMS Kokyuroku}, 966 (1996), 61.   Google Scholar

[8]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).   Google Scholar

[9]

M. Farkas, On the stability of stationary age distributions,, \emph{Appl. Math. Comp.}, 131 (2002), 107.  doi: 10.1016/S0096-3003(01)00131-X.  Google Scholar

[10]

J. Z. Farkas, Stability conditions for a nonlinear size-structured model,, \emph{Nonl. Anal. (RWA)}, 6 (2005), 962.  doi: 10.1016/j.nonrwa.2004.06.002.  Google Scholar

[11]

J. Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population model,, \emph{J. Math. Anal. Appl.}, 328 (2007), 119.  doi: 10.1016/j.jmaa.2006.05.032.  Google Scholar

[12]

X. Fu and D. Zhu, Stability results for a size-structured population model with delayed birth process,, \emph{Discr. Cont. Dyn. Syst. B}, 1 (2013), 109.  doi: 10.3934/dcdsb.2013.18.109.  Google Scholar

[13]

G. Greiner, A typical Perron-Frobenius theorem with applications to an age-dependent populationequation,, \emph{Lect. Notes in Math.}, 1076 (1984), 86.  doi: 10.1007/BFb0072769.  Google Scholar

[14]

G. Greiner, Perturbing the boundary conditions of a generator,, \emph{Houston J. Math.}, 13 (1987), 213.   Google Scholar

[15]

G. Greiner and R. Nagel, Growth of cell populations via one-parameter semigroups of positive operators,, Math. Appl. Sci. (New Orleans, (1986), 79.   Google Scholar

[16]

B. Guo and W. Chan, A semigroup approach to age dependent population dynamics with time delay,, \emph{Comm. PDEs}, 14 (1989), 809.  doi: 10.1080/03605308908820630.  Google Scholar

[17]

M. Gyllenberg and G. F. Webb, Asynchronous exponential growth of semigroups of nonlinear operators,, \emph{J. Math. Anal. Appl.}, 167 (1992), 443.  doi: 10.1016/0022-247X(92)90218-3.  Google Scholar

[18]

T. Hagen, Eigenvalue asymptotics in isothermal forced elongation,, \emph{J. Math. Anal. Appl.}, 224 (2000), 393.  doi: 10.1006/jmaa.1999.6708.  Google Scholar

[19]

T. Hagen and M. Renardy, Eigenvalue asymptotics in nonisothermal elongational flow,, \emph{J. Math. Anal. Appl.}, 252 (2000), 431.  doi: 10.1006/jmaa.2000.7089.  Google Scholar

[20]

T. Hagen and M. Renardy, Studies on the linear equations of melt-spinning of viscous fluids,, \emph{Diff. Int. Eq.}, 14 (2001), 19.   Google Scholar

[21]

H. Inaba, Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model,, \emph{J. Math. Biol.}, 54 (2007), 101.  doi: 10.1007/s00285-006-0033-y.  Google Scholar

[22]

Z. Liu, P. Magal and H. Tang, Hopf bifurcation for a spatially and age structured population dynamics model,, \emph{Discr. Cont. Dyn. Syst. B}, 20 (2015), 1735.  doi: 10.3934/dcdsb.2015.20.1735.  Google Scholar

[23]

Y. Liu and Z. He, Stability results for a size-structured population model with resources-dependence and inflow,, \emph{J. Math. Anal. Appl.}, 360 (2009), 665.  doi: 10.1016/j.jmaa.2009.07.005.  Google Scholar

[24]

R. Nagel ed., One-Parameter Semigroups of Positive Operators,, Lect. Notes in Math. vol. 1184, (1184).   Google Scholar

[25]

R. Nagel, The spectrum of unbounded operator matrices with non-diagonal domain,, \emph{J. Funct. Anal.}, 89 (1990), 291.  doi: 10.1016/0022-1236(90)90096-4.  Google Scholar

[26]

R. Nagel, G. Nickel and S. Romanelli, Identification of extrapolation spaces for unbounded operators,, \emph{Quaestiones Math.}, 19 (1996), 83.   Google Scholar

[27]

J. Pruss and W. Schappacher, Semigroup methods for age-structured population dynamics,, Jahrbuch Uberblicke Mathematik, (1994), 74.   Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

S. Pizzera, An age dependent population equation with delayed birth process,, \emph{Math. Meth. Appl. Sci.}, 27 (2004), 427.  doi: 10.1002/mma.462.  Google Scholar

[30]

S. Pizzera and L. Tonetto, Asynchronous exponential growth for an age dependent population equation with delayed birth process,, \emph{J. Evol. Equ.}, 5 (2005), 61.  doi: 10.1007/s00028-004-0159-6.  Google Scholar

[31]

A. Rhandi and R. Schnaubelt, Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$,, \emph{Discr. Cont. Dyn. Syst.}, 5 (1999), 663.  doi: 10.3934/dcds.1999.5.663.  Google Scholar

[32]

W. E. Ricker, Computation and interpretation of biological studies of fish populations,, \emph{Bull. Fish. Res. Board Can.}, 191 (1975).   Google Scholar

[33]

K. E. Swick, A nonlinear age-dependent model of single species population dynamics,, \emph{SIAM J. Appl. Math.}, 32 (1977), 484.   Google Scholar

[34]

K. E. Swick, Periodic solutions of a nonlinear age-dependent model of single species population dynamics,, \emph{SIAM J. Math. Anal.}, 11 (1980), 901.  doi: 10.1137/0511080.  Google Scholar

[35]

L. Weis, The stability of positive semigroups on $L_p$ spaces,, Proceedings of the American Mathematical Society, 123 (1995), 3089.  doi: 10.2307/2160665.  Google Scholar

[36]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcell Dekker, (1985).   Google Scholar

show all references

References:
[1]

D. M. Auslander, G. F. Oster and C. B. Huffaker, Dynamics of interacting populations,, \emph{J. Franklin Inst.}, 297 (1974), 345.   Google Scholar

[2]

A. Bátkai and S. Piazzera, Semigroups and linear partial differential equations with delay,, \emph{J. Math. Anal. Appl.}, 264 (2001), 1.  doi: 10.1006/jmaa.2001.6705.  Google Scholar

[3]

M. Boulanouar, The asymptotic behavior of a structured cell population,, \emph{J. Evol. Equ.}, 11 (2011), 531.  doi: 10.1007/s00028-011-0100-8.  Google Scholar

[4]

G. Di Blasio, Nonlinear age-dependent population growth with history-dependent birth rate,, \emph{Math. Biosci.}, 46 (1979), 279.  doi: 10.1016/0025-5564(79)90073-7.  Google Scholar

[5]

O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars,, \emph{SIAM J. Math. Anal., 39 (2007), 1023.  doi: 10.1137/060659211.  Google Scholar

[6]

O. Diekmann and M. Gyllenberg, Abstract delay equations inspired by population dynamics,, \emph{Fun. Anal. Evol. Eq.}, 47 (2008), 187.  doi: 10.1007/978-3-7643-7794-6_12.  Google Scholar

[7]

K. J. Engel, Operator matrices and systems of evolution equations,, \emph{RIMS Kokyuroku}, 966 (1996), 61.   Google Scholar

[8]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).   Google Scholar

[9]

M. Farkas, On the stability of stationary age distributions,, \emph{Appl. Math. Comp.}, 131 (2002), 107.  doi: 10.1016/S0096-3003(01)00131-X.  Google Scholar

[10]

J. Z. Farkas, Stability conditions for a nonlinear size-structured model,, \emph{Nonl. Anal. (RWA)}, 6 (2005), 962.  doi: 10.1016/j.nonrwa.2004.06.002.  Google Scholar

[11]

J. Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population model,, \emph{J. Math. Anal. Appl.}, 328 (2007), 119.  doi: 10.1016/j.jmaa.2006.05.032.  Google Scholar

[12]

X. Fu and D. Zhu, Stability results for a size-structured population model with delayed birth process,, \emph{Discr. Cont. Dyn. Syst. B}, 1 (2013), 109.  doi: 10.3934/dcdsb.2013.18.109.  Google Scholar

[13]

G. Greiner, A typical Perron-Frobenius theorem with applications to an age-dependent populationequation,, \emph{Lect. Notes in Math.}, 1076 (1984), 86.  doi: 10.1007/BFb0072769.  Google Scholar

[14]

G. Greiner, Perturbing the boundary conditions of a generator,, \emph{Houston J. Math.}, 13 (1987), 213.   Google Scholar

[15]

G. Greiner and R. Nagel, Growth of cell populations via one-parameter semigroups of positive operators,, Math. Appl. Sci. (New Orleans, (1986), 79.   Google Scholar

[16]

B. Guo and W. Chan, A semigroup approach to age dependent population dynamics with time delay,, \emph{Comm. PDEs}, 14 (1989), 809.  doi: 10.1080/03605308908820630.  Google Scholar

[17]

M. Gyllenberg and G. F. Webb, Asynchronous exponential growth of semigroups of nonlinear operators,, \emph{J. Math. Anal. Appl.}, 167 (1992), 443.  doi: 10.1016/0022-247X(92)90218-3.  Google Scholar

[18]

T. Hagen, Eigenvalue asymptotics in isothermal forced elongation,, \emph{J. Math. Anal. Appl.}, 224 (2000), 393.  doi: 10.1006/jmaa.1999.6708.  Google Scholar

[19]

T. Hagen and M. Renardy, Eigenvalue asymptotics in nonisothermal elongational flow,, \emph{J. Math. Anal. Appl.}, 252 (2000), 431.  doi: 10.1006/jmaa.2000.7089.  Google Scholar

[20]

T. Hagen and M. Renardy, Studies on the linear equations of melt-spinning of viscous fluids,, \emph{Diff. Int. Eq.}, 14 (2001), 19.   Google Scholar

[21]

H. Inaba, Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model,, \emph{J. Math. Biol.}, 54 (2007), 101.  doi: 10.1007/s00285-006-0033-y.  Google Scholar

[22]

Z. Liu, P. Magal and H. Tang, Hopf bifurcation for a spatially and age structured population dynamics model,, \emph{Discr. Cont. Dyn. Syst. B}, 20 (2015), 1735.  doi: 10.3934/dcdsb.2015.20.1735.  Google Scholar

[23]

Y. Liu and Z. He, Stability results for a size-structured population model with resources-dependence and inflow,, \emph{J. Math. Anal. Appl.}, 360 (2009), 665.  doi: 10.1016/j.jmaa.2009.07.005.  Google Scholar

[24]

R. Nagel ed., One-Parameter Semigroups of Positive Operators,, Lect. Notes in Math. vol. 1184, (1184).   Google Scholar

[25]

R. Nagel, The spectrum of unbounded operator matrices with non-diagonal domain,, \emph{J. Funct. Anal.}, 89 (1990), 291.  doi: 10.1016/0022-1236(90)90096-4.  Google Scholar

[26]

R. Nagel, G. Nickel and S. Romanelli, Identification of extrapolation spaces for unbounded operators,, \emph{Quaestiones Math.}, 19 (1996), 83.   Google Scholar

[27]

J. Pruss and W. Schappacher, Semigroup methods for age-structured population dynamics,, Jahrbuch Uberblicke Mathematik, (1994), 74.   Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

S. Pizzera, An age dependent population equation with delayed birth process,, \emph{Math. Meth. Appl. Sci.}, 27 (2004), 427.  doi: 10.1002/mma.462.  Google Scholar

[30]

S. Pizzera and L. Tonetto, Asynchronous exponential growth for an age dependent population equation with delayed birth process,, \emph{J. Evol. Equ.}, 5 (2005), 61.  doi: 10.1007/s00028-004-0159-6.  Google Scholar

[31]

A. Rhandi and R. Schnaubelt, Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$,, \emph{Discr. Cont. Dyn. Syst.}, 5 (1999), 663.  doi: 10.3934/dcds.1999.5.663.  Google Scholar

[32]

W. E. Ricker, Computation and interpretation of biological studies of fish populations,, \emph{Bull. Fish. Res. Board Can.}, 191 (1975).   Google Scholar

[33]

K. E. Swick, A nonlinear age-dependent model of single species population dynamics,, \emph{SIAM J. Appl. Math.}, 32 (1977), 484.   Google Scholar

[34]

K. E. Swick, Periodic solutions of a nonlinear age-dependent model of single species population dynamics,, \emph{SIAM J. Math. Anal.}, 11 (1980), 901.  doi: 10.1137/0511080.  Google Scholar

[35]

L. Weis, The stability of positive semigroups on $L_p$ spaces,, Proceedings of the American Mathematical Society, 123 (1995), 3089.  doi: 10.2307/2160665.  Google Scholar

[36]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcell Dekker, (1985).   Google Scholar

[1]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288

[5]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[6]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[7]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[10]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[11]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[12]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[13]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[14]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[17]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[18]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[19]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[20]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]