May  2016, 15(3): 715-726. doi: 10.3934/cpaa.2016.15.715

On Compactness Conditions for the $p$-Laplacian

1. 

Department of Mathematics, University of West Bohemia, Univerzitní 8, 306 14 Pilsen, Czech Republic

Received  April 2014 Revised  March 2015 Published  February 2016

We investigate the geometry and validity of various compactness conditions (e.g. Palais-Smale condition) for the energy functional \begin{eqnarray} J_{\lambda_1}(u)=\frac{1}{p}\int_\Omega |\nabla u|^p \ \mathrm{d}x- \frac{\lambda_1}{p}\int_\Omega|u|^p \ \mathrm{d}x - \int_\Omega fu \ \mathrm{d}x \nonumber \end{eqnarray} for $u \in W^{1,p}_0(\Omega)$, $1 < p < \infty$, where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $f \in L^\infty(\Omega)$ is a given function and $-\lambda_1<0$ is the first eigenvalue of the Dirichlet $p$-Laplacian $\Delta_p$ on $W_0^{1,p}(\Omega)$.
Citation: Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715
References:
[1]

J. Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, Comptes Rendus Acad.Sci. Paris Srie I, (1987).

[2]

P. Drábek, P. Girg, P. Takáč and M. Ulm, The Fredholm alternative for the $p$-Laplacian: bifurcation from infinity, existence and multiplicity, Indiana Univ. Math. J., (2004). doi: 10.1512/iumj.2004.53.2396.

[3]

P. Drábek and J. Milota, Methods of Nonlinear Analysis, Birkhäuser, 2013. doi: 10.1007/978-3-0348-0387-8.

[4]

P. Drábek and P. Takáč , Poincaré inequality and Palais-Smale condition for the $p$-Laplacian, Calc. Var., (2007). doi: 10.1007/s00526-006-0055-8.

[5]

A. R. El Amrouss, Critical Point Theorems and Applications to Differential Equations, Acta Math. Sinica, English Series, (2005). doi: 10.1007/s10114-004-0442-z.

[6]

J. Fleckinger and P. Takáč, An improved Poincaré inequality and the $p$-Laplacian at resonance for $p>2$, Adv.Differ Equ., (2002).

[7]

P. Takáč, On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue, Indiana Univ. Math. J., (2002). doi: 10.1512/iumj.2002.51.2156.

[8]

P. Takáč, On the number and structure of solutions for a Fredholm alternative with the $p$-Laplacian, J. Differ. Equ., (2002). doi: 10.1006/jdeq.2002.4173.

show all references

References:
[1]

J. Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, Comptes Rendus Acad.Sci. Paris Srie I, (1987).

[2]

P. Drábek, P. Girg, P. Takáč and M. Ulm, The Fredholm alternative for the $p$-Laplacian: bifurcation from infinity, existence and multiplicity, Indiana Univ. Math. J., (2004). doi: 10.1512/iumj.2004.53.2396.

[3]

P. Drábek and J. Milota, Methods of Nonlinear Analysis, Birkhäuser, 2013. doi: 10.1007/978-3-0348-0387-8.

[4]

P. Drábek and P. Takáč , Poincaré inequality and Palais-Smale condition for the $p$-Laplacian, Calc. Var., (2007). doi: 10.1007/s00526-006-0055-8.

[5]

A. R. El Amrouss, Critical Point Theorems and Applications to Differential Equations, Acta Math. Sinica, English Series, (2005). doi: 10.1007/s10114-004-0442-z.

[6]

J. Fleckinger and P. Takáč, An improved Poincaré inequality and the $p$-Laplacian at resonance for $p>2$, Adv.Differ Equ., (2002).

[7]

P. Takáč, On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue, Indiana Univ. Math. J., (2002). doi: 10.1512/iumj.2002.51.2156.

[8]

P. Takáč, On the number and structure of solutions for a Fredholm alternative with the $p$-Laplacian, J. Differ. Equ., (2002). doi: 10.1006/jdeq.2002.4173.

[1]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[2]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[3]

A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987

[4]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[5]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

[6]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3497-3528. doi: 10.3934/dcdss.2020442

[8]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[9]

Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure and Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1

[10]

R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211

[11]

J. Ángel Cid, Pedro J. Torres. Solvability for some boundary value problems with $\phi$-Laplacian operators. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 727-732. doi: 10.3934/dcds.2009.23.727

[12]

Nicola Abatangelo, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian: From hypersingular integrals to boundary value problems. Communications on Pure and Applied Analysis, 2018, 17 (3) : 899-922. doi: 10.3934/cpaa.2018045

[13]

Juan Campos, Rafael Obaya, Massimo Tarallo. Recurrent equations with sign and Fredholm alternative. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 959-977. doi: 10.3934/dcdss.2016036

[14]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[15]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[16]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[17]

Anna Mercaldo, Julio D. Rossi, Sergio Segura de León, Cristina Trombetti. Behaviour of $p$--Laplacian problems with Neumann boundary conditions when $p$ goes to 1. Communications on Pure and Applied Analysis, 2013, 12 (1) : 253-267. doi: 10.3934/cpaa.2013.12.253

[18]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[19]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[20]

Youngmok Jeon, Dongwook Shin. Immersed hybrid difference methods for elliptic boundary value problems by artificial interface conditions. Electronic Research Archive, 2021, 29 (5) : 3361-3382. doi: 10.3934/era.2021043

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]