\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On Compactness Conditions for the $p$-Laplacian

Abstract Related Papers Cited by
  • We investigate the geometry and validity of various compactness conditions (e.g. Palais-Smale condition) for the energy functional \begin{eqnarray} J_{\lambda_1}(u)=\frac{1}{p}\int_\Omega |\nabla u|^p \ \mathrm{d}x- \frac{\lambda_1}{p}\int_\Omega|u|^p \ \mathrm{d}x - \int_\Omega fu \ \mathrm{d}x \nonumber \end{eqnarray} for $u \in W^{1,p}_0(\Omega)$, $1 < p < \infty$, where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $f \in L^\infty(\Omega)$ is a given function and $-\lambda_1<0$ is the first eigenvalue of the Dirichlet $p$-Laplacian $\Delta_p$ on $W_0^{1,p}(\Omega)$.
    Mathematics Subject Classification: Primary: 35J20; Secondary: 35P30, 46E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, Comptes Rendus Acad.Sci. Paris Srie I, (1987).

    [2]

    P. Drábek, P. Girg, P. Takáč and M. Ulm, The Fredholm alternative for the $p$-Laplacian: bifurcation from infinity, existence and multiplicity, Indiana Univ. Math. J., (2004).doi: 10.1512/iumj.2004.53.2396.

    [3]

    P. Drábek and J. Milota, Methods of Nonlinear Analysis, Birkhäuser, 2013.doi: 10.1007/978-3-0348-0387-8.

    [4]

    P. Drábek and P. Takáč , Poincaré inequality and Palais-Smale condition for the $p$-Laplacian, Calc. Var., (2007).doi: 10.1007/s00526-006-0055-8.

    [5]

    A. R. El Amrouss, Critical Point Theorems and Applications to Differential Equations, Acta Math. Sinica, English Series, (2005).doi: 10.1007/s10114-004-0442-z.

    [6]

    J. Fleckinger and P. Takáč, An improved Poincaré inequality and the $p$-Laplacian at resonance for $p>2$, Adv.Differ Equ., (2002).

    [7]

    P. Takáč, On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue, Indiana Univ. Math. J., (2002).doi: 10.1512/iumj.2002.51.2156.

    [8]

    P. Takáč, On the number and structure of solutions for a Fredholm alternative with the $p$-Laplacian, J. Differ. Equ., (2002).doi: 10.1006/jdeq.2002.4173.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(147) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return