Citation: |
[1] |
J. Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, Comptes Rendus Acad.Sci. Paris Srie I, (1987). |
[2] |
P. Drábek, P. Girg, P. Takáč and M. Ulm, The Fredholm alternative for the $p$-Laplacian: bifurcation from infinity, existence and multiplicity, Indiana Univ. Math. J., (2004).doi: 10.1512/iumj.2004.53.2396. |
[3] |
P. Drábek and J. Milota, Methods of Nonlinear Analysis, Birkhäuser, 2013.doi: 10.1007/978-3-0348-0387-8. |
[4] |
P. Drábek and P. Takáč , Poincaré inequality and Palais-Smale condition for the $p$-Laplacian, Calc. Var., (2007).doi: 10.1007/s00526-006-0055-8. |
[5] |
A. R. El Amrouss, Critical Point Theorems and Applications to Differential Equations, Acta Math. Sinica, English Series, (2005).doi: 10.1007/s10114-004-0442-z. |
[6] |
J. Fleckinger and P. Takáč, An improved Poincaré inequality and the $p$-Laplacian at resonance for $p>2$, Adv.Differ Equ., (2002). |
[7] |
P. Takáč, On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue, Indiana Univ. Math. J., (2002).doi: 10.1512/iumj.2002.51.2156. |
[8] |
P. Takáč, On the number and structure of solutions for a Fredholm alternative with the $p$-Laplacian, J. Differ. Equ., (2002).doi: 10.1006/jdeq.2002.4173. |