May  2016, 15(3): 715-726. doi: 10.3934/cpaa.2016.15.715

On Compactness Conditions for the $p$-Laplacian

1. 

Department of Mathematics, University of West Bohemia, Univerzitní 8, 306 14 Pilsen, Czech Republic

Received  April 2014 Revised  March 2015 Published  February 2016

We investigate the geometry and validity of various compactness conditions (e.g. Palais-Smale condition) for the energy functional \begin{eqnarray} J_{\lambda_1}(u)=\frac{1}{p}\int_\Omega |\nabla u|^p \ \mathrm{d}x- \frac{\lambda_1}{p}\int_\Omega|u|^p \ \mathrm{d}x - \int_\Omega fu \ \mathrm{d}x \nonumber \end{eqnarray} for $u \in W^{1,p}_0(\Omega)$, $1 < p < \infty$, where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $f \in L^\infty(\Omega)$ is a given function and $-\lambda_1<0$ is the first eigenvalue of the Dirichlet $p$-Laplacian $\Delta_p$ on $W_0^{1,p}(\Omega)$.
Citation: Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715
References:
[1]

J. Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids,, \emph{Comptes Rendus Acad.Sci. Paris Srie I}, (1987).   Google Scholar

[2]

P. Drábek, P. Girg, P. Takáč and M. Ulm, The Fredholm alternative for the $p$-Laplacian: bifurcation from infinity, existence and multiplicity,, \emph{Indiana Univ. Math. J.}, (2004).  doi: 10.1512/iumj.2004.53.2396.  Google Scholar

[3]

P. Drábek and J. Milota, Methods of Nonlinear Analysis,, Birkh\, (2013).  doi: 10.1007/978-3-0348-0387-8.  Google Scholar

[4]

P. Drábek and P. Takáč, Poincaré inequality and Palais-Smale condition for the $p$-Laplacian,, \emph{Calc. Var.}, (2007).  doi: 10.1007/s00526-006-0055-8.  Google Scholar

[5]

A. R. El Amrouss, Critical Point Theorems and Applications to Differential Equations,, \emph{Acta Math. Sinica, (2005).  doi: 10.1007/s10114-004-0442-z.  Google Scholar

[6]

J. Fleckinger and P. Takáč, An improved Poincaré inequality and the $p$-Laplacian at resonance for $p>2$,, \emph{Adv.Differ Equ.}, (2002).   Google Scholar

[7]

P. Takáč, On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue,, \emph{Indiana Univ. Math. J.}, (2002).  doi: 10.1512/iumj.2002.51.2156.  Google Scholar

[8]

P. Takáč, On the number and structure of solutions for a Fredholm alternative with the $p$-Laplacian,, \emph{J. Differ. Equ.}, (2002).  doi: 10.1006/jdeq.2002.4173.  Google Scholar

show all references

References:
[1]

J. Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids,, \emph{Comptes Rendus Acad.Sci. Paris Srie I}, (1987).   Google Scholar

[2]

P. Drábek, P. Girg, P. Takáč and M. Ulm, The Fredholm alternative for the $p$-Laplacian: bifurcation from infinity, existence and multiplicity,, \emph{Indiana Univ. Math. J.}, (2004).  doi: 10.1512/iumj.2004.53.2396.  Google Scholar

[3]

P. Drábek and J. Milota, Methods of Nonlinear Analysis,, Birkh\, (2013).  doi: 10.1007/978-3-0348-0387-8.  Google Scholar

[4]

P. Drábek and P. Takáč, Poincaré inequality and Palais-Smale condition for the $p$-Laplacian,, \emph{Calc. Var.}, (2007).  doi: 10.1007/s00526-006-0055-8.  Google Scholar

[5]

A. R. El Amrouss, Critical Point Theorems and Applications to Differential Equations,, \emph{Acta Math. Sinica, (2005).  doi: 10.1007/s10114-004-0442-z.  Google Scholar

[6]

J. Fleckinger and P. Takáč, An improved Poincaré inequality and the $p$-Laplacian at resonance for $p>2$,, \emph{Adv.Differ Equ.}, (2002).   Google Scholar

[7]

P. Takáč, On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue,, \emph{Indiana Univ. Math. J.}, (2002).  doi: 10.1512/iumj.2002.51.2156.  Google Scholar

[8]

P. Takáč, On the number and structure of solutions for a Fredholm alternative with the $p$-Laplacian,, \emph{J. Differ. Equ.}, (2002).  doi: 10.1006/jdeq.2002.4173.  Google Scholar

[1]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[9]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[10]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[11]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[12]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[13]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[14]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]