-
Previous Article
A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space
- CPAA Home
- This Issue
-
Next Article
On Compactness Conditions for the $p$-Laplacian
Well-posedness and ill-posedness results for the Novikov-Veselov equation
1. | Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George Street, Toronto, On M5S 2E4, Canada |
References:
[1] |
L. V. Bogdanov, The Veselov-Novikov equation as a natural generalization of the Korteweg de Vries equation, Teoret. Mat. Fiz., 70 (1987), 309-314. English translation: Theoret. and Math. Phys., 70 (1987), 219-223. |
[2] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, II: The KdV equation, GAFA, 3 (1993), 107-156.
doi: 10.1007/BF01896020. |
[3] |
J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, GAFA, 3 (1993), 315-341.
doi: 10.1007/BF01896259. |
[4] |
J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Sel. Math. New. Ser., 3 (1997), 115-159.
doi: 10.1007/s000290050008. |
[5] |
N. Burq, Éstimations de Strichartz pour des parturbations à longue portée de l'opérateur de Schrödinger,, \emph{S\'eminaire \'E.D.P.}, (): 2001.
|
[6] |
A. Carbery, C. E. Kenig and S. Ziesler, Restriction for homogeneous polynomial surfaces in $\mathbbR^3$,, arXiv:1108.4123, ().
doi: 10.1090/S0002-9947-2012-05685-6. |
[7] |
M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations,, arXiv:math/0311048, ().
|
[8] |
M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425.
doi: 10.1006/jfan.2000.3687. |
[9] |
A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equations, 31 (1995), 1002-1012. |
[10] |
P. G. Grinevich, The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, Uspekhi Mat. Nauk, 55 (2000), 3-70 (Russian); Russian Math. Surveys, 55 (2000), 1015-1083.
doi: 10.1070/rm2000v055n06ABEH000333. |
[11] |
P. G. Grinevich and S. V. Manakov, Inverse scattering problem for the two-dimensional Schrödinger operator, the $\bar{\partial}$-method and nonlinear equations, Funktsional. Anal. i Prilozhen, 20 (1986), 14-24; English transl., Functional Anal. Appl., 20 (1986), 94-103. |
[12] |
A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst. - A., 5 (2014), 2061-2068.
doi: 10.3934/dcds.2014.34.2061. |
[13] |
Z. Hani, A bilinear oscillatory integral estimate and bilinear refinements to Strichartz estimates on closed manifolds, Analysis & PDE, 5 (2012), 339-363.
doi: 10.2140/apde.2012.5.339. |
[14] |
A. Kazeykina, Solitons and Large Time Asymptotics of Solutions for the Novikov-Veselov Equation, PhD thesis at \'Ecole Polytechnique, 2012. |
[15] |
A. Kazeykina and R. G. Novikov, Large time asymptotics for the Grinevich-Zakharov potentials, Bulletin des Sciences Mathématiques, 135 (2011), 374-382.
doi: 10.1016/j.bulsci.2011.02.003. |
[16] |
A. Kazeykina and R. G. Novikov, Absence of exponentially localized solitons for the Novikov-Veselov equation at negative energy, Nonlinearity, 24 (2011), 1821-1830.
doi: 10.1088/0951-7715/24/6/007. |
[17] |
A. Kazeykina and R. G. Novikov, A large time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with nonsingular scattering data, Inverse Problems, 28 (2012), 055017.
doi: 10.1088/0266-5611/28/5/055017. |
[18] |
M. Lassas, J. L. Mueller and S. Siltanen, Mapping properties of the nonlinear Fourier transform in dimension two, Comm. Partial Differential Equations, 32 (2007), 591-610.
doi: 10.1080/03605300500530412. |
[19] |
M. Lassas, J. L. Mueller, S. Siltanen and A. Stahel, The Novikov-Veselov equation and the inverse scattering method, Part I, Analysis, Phys. D, 241 (2012), 1322-1335.
doi: 10.1016/j.physd.2012.04.010. |
[20] |
F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339.
doi: 10.1137/080739173. |
[21] |
F. Linares, A. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton, Communications PDE, 35 (2010), 1674-1689.
doi: 10.1080/03605302.2010.494195. |
[22] |
F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[23] |
L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371.
doi: 10.1016/j.anihpc.2013.12.003. |
[24] |
L. Molinet, J.-C. Saut and N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation, Duke Mathematical Journal, 115 (2002), 353-384.
doi: 10.1215/S0012-7094-02-11525-7. |
[25] |
L. Molinet, J.-C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307. |
[26] |
L. Molinet, J.-C. Saut and N. Tzvetkov, Global well-posedness for the KPII equation on the background of non localized solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 653-676.
doi: 10.1016/j.anihpc.2011.04.004. |
[27] |
C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis, Vol. 1, Cambridge Studies In Advanced Mathematics 137, 2013. |
[28] |
R. G. Novikov, Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy, Phys. Lett. A, 375 (2011), 1233-1235.
doi: 10.1016/j.physleta.2011.01.052. |
[29] |
S. P. Novikov and A. P. Veselov, Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations, Dokl. Akad. Nauk SSSR, 279 (1984), 20-24.. English translation: Soviet Math. Dokl., 30 (1984), 588-591. |
[30] |
S. P. Novikov and A. P. Veselov, Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations. Solitons and coherent structures, Phys. D, 18 (1986), 267-273.
doi: 10.1016/0167-2789(86)90187-9. |
[31] |
P. Perry, Miura maps and inverse scattering for the Novikov-Veselov equation,, \emph{Analysis & PDE}, ().
doi: 10.2140/apde.2014.7.311. |
[32] |
L. Robbiano and C. Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Société Mathématique de France, Paris: Mémoires de la Société Mathématique de France, (2005), 101-102. |
[33] |
G. Staffilani and D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations, 27 (2002), 1337-1372.
doi: 10.1081/PDE-120005841. |
[34] |
T. Tao, Nonlinear Dispersive Equations: Local And Global Analysis, Regional Conference Series In Mathematics, 106, AMS, Providence, RI, 2006. |
[35] |
N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C.R. Acad. Sci. Paris Sér. I Math., 329 (1999), 1043-1047.
doi: 10.1016/S0764-4442(00)88471-2. |
show all references
References:
[1] |
L. V. Bogdanov, The Veselov-Novikov equation as a natural generalization of the Korteweg de Vries equation, Teoret. Mat. Fiz., 70 (1987), 309-314. English translation: Theoret. and Math. Phys., 70 (1987), 219-223. |
[2] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, II: The KdV equation, GAFA, 3 (1993), 107-156.
doi: 10.1007/BF01896020. |
[3] |
J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, GAFA, 3 (1993), 315-341.
doi: 10.1007/BF01896259. |
[4] |
J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Sel. Math. New. Ser., 3 (1997), 115-159.
doi: 10.1007/s000290050008. |
[5] |
N. Burq, Éstimations de Strichartz pour des parturbations à longue portée de l'opérateur de Schrödinger,, \emph{S\'eminaire \'E.D.P.}, (): 2001.
|
[6] |
A. Carbery, C. E. Kenig and S. Ziesler, Restriction for homogeneous polynomial surfaces in $\mathbbR^3$,, arXiv:1108.4123, ().
doi: 10.1090/S0002-9947-2012-05685-6. |
[7] |
M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations,, arXiv:math/0311048, ().
|
[8] |
M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425.
doi: 10.1006/jfan.2000.3687. |
[9] |
A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equations, 31 (1995), 1002-1012. |
[10] |
P. G. Grinevich, The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, Uspekhi Mat. Nauk, 55 (2000), 3-70 (Russian); Russian Math. Surveys, 55 (2000), 1015-1083.
doi: 10.1070/rm2000v055n06ABEH000333. |
[11] |
P. G. Grinevich and S. V. Manakov, Inverse scattering problem for the two-dimensional Schrödinger operator, the $\bar{\partial}$-method and nonlinear equations, Funktsional. Anal. i Prilozhen, 20 (1986), 14-24; English transl., Functional Anal. Appl., 20 (1986), 94-103. |
[12] |
A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst. - A., 5 (2014), 2061-2068.
doi: 10.3934/dcds.2014.34.2061. |
[13] |
Z. Hani, A bilinear oscillatory integral estimate and bilinear refinements to Strichartz estimates on closed manifolds, Analysis & PDE, 5 (2012), 339-363.
doi: 10.2140/apde.2012.5.339. |
[14] |
A. Kazeykina, Solitons and Large Time Asymptotics of Solutions for the Novikov-Veselov Equation, PhD thesis at \'Ecole Polytechnique, 2012. |
[15] |
A. Kazeykina and R. G. Novikov, Large time asymptotics for the Grinevich-Zakharov potentials, Bulletin des Sciences Mathématiques, 135 (2011), 374-382.
doi: 10.1016/j.bulsci.2011.02.003. |
[16] |
A. Kazeykina and R. G. Novikov, Absence of exponentially localized solitons for the Novikov-Veselov equation at negative energy, Nonlinearity, 24 (2011), 1821-1830.
doi: 10.1088/0951-7715/24/6/007. |
[17] |
A. Kazeykina and R. G. Novikov, A large time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with nonsingular scattering data, Inverse Problems, 28 (2012), 055017.
doi: 10.1088/0266-5611/28/5/055017. |
[18] |
M. Lassas, J. L. Mueller and S. Siltanen, Mapping properties of the nonlinear Fourier transform in dimension two, Comm. Partial Differential Equations, 32 (2007), 591-610.
doi: 10.1080/03605300500530412. |
[19] |
M. Lassas, J. L. Mueller, S. Siltanen and A. Stahel, The Novikov-Veselov equation and the inverse scattering method, Part I, Analysis, Phys. D, 241 (2012), 1322-1335.
doi: 10.1016/j.physd.2012.04.010. |
[20] |
F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339.
doi: 10.1137/080739173. |
[21] |
F. Linares, A. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton, Communications PDE, 35 (2010), 1674-1689.
doi: 10.1080/03605302.2010.494195. |
[22] |
F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[23] |
L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371.
doi: 10.1016/j.anihpc.2013.12.003. |
[24] |
L. Molinet, J.-C. Saut and N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation, Duke Mathematical Journal, 115 (2002), 353-384.
doi: 10.1215/S0012-7094-02-11525-7. |
[25] |
L. Molinet, J.-C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307. |
[26] |
L. Molinet, J.-C. Saut and N. Tzvetkov, Global well-posedness for the KPII equation on the background of non localized solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 653-676.
doi: 10.1016/j.anihpc.2011.04.004. |
[27] |
C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis, Vol. 1, Cambridge Studies In Advanced Mathematics 137, 2013. |
[28] |
R. G. Novikov, Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy, Phys. Lett. A, 375 (2011), 1233-1235.
doi: 10.1016/j.physleta.2011.01.052. |
[29] |
S. P. Novikov and A. P. Veselov, Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations, Dokl. Akad. Nauk SSSR, 279 (1984), 20-24.. English translation: Soviet Math. Dokl., 30 (1984), 588-591. |
[30] |
S. P. Novikov and A. P. Veselov, Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations. Solitons and coherent structures, Phys. D, 18 (1986), 267-273.
doi: 10.1016/0167-2789(86)90187-9. |
[31] |
P. Perry, Miura maps and inverse scattering for the Novikov-Veselov equation,, \emph{Analysis & PDE}, ().
doi: 10.2140/apde.2014.7.311. |
[32] |
L. Robbiano and C. Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Société Mathématique de France, Paris: Mémoires de la Société Mathématique de France, (2005), 101-102. |
[33] |
G. Staffilani and D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations, 27 (2002), 1337-1372.
doi: 10.1081/PDE-120005841. |
[34] |
T. Tao, Nonlinear Dispersive Equations: Local And Global Analysis, Regional Conference Series In Mathematics, 106, AMS, Providence, RI, 2006. |
[35] |
N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C.R. Acad. Sci. Paris Sér. I Math., 329 (1999), 1043-1047.
doi: 10.1016/S0764-4442(00)88471-2. |
[1] |
Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061 |
[2] |
Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure and Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034 |
[3] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290 |
[4] |
Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149 |
[5] |
Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263 |
[6] |
Bassam Kojok. Global existence for a forced dispersive dissipative equation via the I-method. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1401-1419. doi: 10.3934/cpaa.2009.8.1401 |
[7] |
José Manuel Palacios. Orbital and asymptotic stability of a train of peakons for the Novikov equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2475-2518. doi: 10.3934/dcds.2020372 |
[8] |
Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304 |
[9] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[10] |
Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803 |
[11] |
M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121 |
[12] |
Makoto Nakamura. Remarks on a dispersive equation in de Sitter spacetime. Conference Publications, 2015, 2015 (special) : 901-905. doi: 10.3934/proc.2015.0901 |
[13] |
H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709 |
[14] |
Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121 |
[15] |
Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure and Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203 |
[16] |
Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic and Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445 |
[17] |
JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305 |
[18] |
Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005 |
[19] |
Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387 |
[20] |
Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]