\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity

Abstract Related Papers Cited by
  • In the present paper, we consider the Cauchy problem of fourth order nonlinear Schrödinger type equations with derivative nonlinearity. In one dimensional case, the small data global well-posedness and scattering for the fourth order nonlinear Schrödinger equation with the nonlinear term $\partial _x (\overline{u}^4)$ are shown in the scaling invariant space $\dot{H}^{-1/2}$. Furthermore, we show that the same result holds for the $d \ge 2$ and derivative polynomial type nonlinearity, for example $|\nabla | (u^m)$ with $(m-1)d \ge 4$, where $d$ denotes the space dimension.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.doi: 10.1016/0022-1236(91)90103-C.

    [2]

    K. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, Proc. R. Soc. Lond. Ser. A, 369 (1979), 105-114.

    [3]

    Y. Fukumoto, Motion of a curved vortex filament: higher-order asymptotics, in Proc. IUTAM Symp. Geom. Stat. Turbul., 2001, 211-216.doi: 10.1007/978-94-015-9638-1_25.

    [4]

    M. Hadac, S. Herr, and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non linéaie., 26 (2009), 917-941.doi: 10.1016/j.anihpc.2008.04.002.

    [5]

    M. Hadac, S. Herr, and H. Koch, Errantum to "Well-posedness and scattering for the KP-II equation in a critical space'' [Ann. I. H. Poincaré-AN26 (3) (2009) 917-941], Ann. Inst. H. Poincaré Anal. Non linéaie., 27 (2010), 971-972.doi: 10.1016/j.anihpc.2010.01.006.

    [6]

    C. Hao, L. Hsiao, and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.doi: 10.1016/j.jmaa.2005.06.091.

    [7]

    C. Hao, L. Hsiao, and B. Wang, Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi dimensional spaces, J. Math. Anal. Appl., 328 (2007), 58-83.doi: 10.1016/j.jmaa.2006.05.031.

    [8]

    N. Hayashi and P. I. Naumkin, Large time asymptotics for the fourth-order nonlinear Schrödinger equation, J. Differential Equations, 258 (2015), 880-905.doi: 10.1016/j.jde.2014.10.007.

    [9]

    N. Hayashi and P. I. Naumkin, Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case, Nonlinear Anal., 116 (2015), 112-131.doi: 10.1016/j.na.2014.12.024.

    [10]

    H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity, FUNKCIALAJ EKVACIOJ, arxiv: 1311.3119.

    [11]

    Z. Huo and Y. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differential Equations, 214 (2005), 1-35.doi: 10.1016/j.jde.2004.09.005.

    [12]

    Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Comm. Partial Differential Equations, 32 (2007), 1493-1510.doi: 10.1080/03605300701629385.

    [13]

    Z. Huo and Y. Jia, Well-posedness for the fourth-order nonlinear derivative Schrödinger equation in higher dimension, J. Math. Pures Appl., 96 (2011), 190-206.doi: 10.1016/j.matpur.2011.01.002.

    [14]

    V. Karpman, Stabilization of soliton instabilities by higher order dispersion: fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.

    [15]

    V. Karpman and A. Shagalov, Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion, Physica D, 144 (2000), 194-210.doi: 10.1016/S0167-2789(00)00078-6.

    [16]

    B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dynamics of PDE, 4 (2007), 197-225.doi: 10.4310/DPDE.2007.v4.n3.a1.

    [17]

    J. Segata, Well-posedness for the fourth order nonlinear Schrödinger type equation related to the vortex filament, Diff. and Integral Eqs., 16 (2003), 841-864.

    [18]

    J. Segata, Remark on well-posedness for the fourth order nonlinear Schrödinger type equation, Proc. Amer. Math. Soc., 132 (2004), 3559-3568.doi: 10.1090/S0002-9939-04-07620-8.

    [19]

    J. Segata, Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation, Discrete Contin. Dyn. Syst., 27 (2010), 1093-1105.doi: 10.3934/dcds.2010.27.1093.

    [20]

    Y. Wang, Global well-posedness for the generalized fourth-order Schrödingier equation, Bull. Aust. Math. Soc., 85 (2012), 371-379.doi: 10.1017/S0004972711003327.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(180) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return