\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling waves for a diffusive SEIR epidemic model

Abstract Related Papers Cited by
  • In this paper, we propose a diffusive SEIR epidemic model with saturating incidence rate. We first study the well posedness of the model, and give the explicit formula of the basic reproduction number $\mathcal{R}_0$. And hence, we show that if $\mathcal{R}_0>1$, then there exists a positive constant $c^*>0$ such that for each $c>c^*$, the model admits a nontrivial traveling wave solution, and if $\mathcal{R}_0\leq1$ and $c\geq 0$ (or, $\mathcal{R}_0>1$ and $c\in[0,c^*)$), then the model has no nontrivial traveling wave solutions. Consequently, we confirm that the constant $c^*$ is indeed the minimal wave speed. The proof of the main results is mainly based on Schauder fixed theorem and Laplace transform.
    Mathematics Subject Classification: Primary: 35C07, 35K57; Secondary: 92D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., (1-3) (2015), 1370-1381.doi: 10.1016/j.cnsns.2014.07.005.

    [2]

    F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001.doi: 10.1007/978-1-4757-3516-1.

    [3]

    V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.doi: 10.1016/0025-5564(78)90006-8.

    [4]

    J. Carr and A. Chmaj, Uniquence of the travling waves for nonlocal monostabe equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.doi: 10.1090/S0002-9939-04-07432-5.

    [5]

    J. Fang and X.-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems, J. Dyn. Diff. Equat., 21 (2009), 663-680.doi: 10.1007/s10884-009-9152-7.

    [6]

    H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.doi: 10.1137/S0036144500371907.

    [7]

    H. W. Hethcote and van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.doi: 10.1007/BF00160539.

    [8]

    Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models. Methods Appl. Sci., 5 (1995), 935-966.doi: 10.1142/S0218202595000504.

    [9]

    J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity, Discrete Contin. Dyn. Sys., 9 (2003), 925-936.doi: 10.3934/dcds.2003.9.925.

    [10]

    W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. (Ser. A), 115 (1927), 700-721; part II, Proc. R. Soc. Lond. (Ser. A), 138 (1932), 55-83; part III, Proc. R. Soc. Lond. (Ser. A), 141 (1933), 94-112.

    [11]

    W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1257.doi: 10.1088/0951-7715/19/6/003.

    [12]

    W.-T. Li, G. Lin, C. Ma and F.-Y. Yang, Travelling wave solutions of a nonlocal delayed SIR model with outbreak threshold, Discrete Contin. Dyn. Sys. (Ser.B), 19 (2014), 467-484.doi: 10.3934/dcdsb.2014.19.467.

    [13]

    X. Liang and X.-Q. Zhao, Asymptotic speed of spread and traveling waves for monotone semiflows with applications, Comm. Pure. Appl. Math., 60 (2007) 1-40.doi: 10.1002/cpa.20154.

    [14]

    Y. Lv, R. Yuan and Y. Pei, The imact of predation on the coexistence and competitive exclusion of pathogens in prey, Math. Biosci., 251 (2014), 16-29.doi: 10.1016/j.mbs.2014.02.005.

    [15]

    S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.doi: 10.1006/jdeq.2000.3846.

    [16]

    R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.doi: 10.2307/2001590.

    [17]

    J. D. Murray, Mathematical Biology, I and II, third edn., Springer-Verlag, New York, 2002.

    [18]

    S. Ruan and W. Wang, Dynamical behavior of an epidemic models with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163.doi: 10.1016/S0022-0396(02)00089-X.

    [19]

    H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion stsyems, J. Nonlinear Sciences, 21 (2011), 747-783.doi: 10.1007/s00332-011-9099-9.

    [20]

    H. Wang and X.-S. Wang, Travelling waves phenomena in a Kermack-McKendrick SIR model, J. Dyn. Diff. Equat., DOI 10.1007/s10884-015-9506-2.

    [21]

    W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.doi: 10.1137/090775890.

    [22]

    X.-S. Wang, H. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete Contin. Dyn. Sys., 32 (2012), 3303-3324.doi: 10.3934/dcds.2012.32.3303.

    [23]

    Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. (Ser. A), 466 (2010), 237-261.doi: 10.1098/rspa.2009.0377.

    [24]

    Z.-C. Wang and J. Wu, Travelling waves in a bio-reactor model with stage-structure, J. Math. Anal. Appl., 385 (2012), 683-692.doi: 10.1016/j.jmaa.2011.06.084.

    [25]

    Z.-C. Wang, J. Wu and R. Liu, Traveling waves of Avian influenza spread, Proc. Amer. Math. Soc., 149 (2012), 3931-3946.doi: 10.1090/S0002-9939-2012-11246-8.

    [26]

    P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemics model, J. Differential Equations, 229 (2006), 270-296.doi: 10.1016/j.jde.2006.01.020.

    [27]

    J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.doi: 10.1007/978-1-4612-4050-1.

    [28]

    D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-492.doi: 10.1016/j.mbs.2006.09.025.

    [29]

    R. Xu and Z. Ma, Global stablity of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Analysis: Real World Applications, 10 (2009), 3175-3189.doi: 10.1016/j.nonrwa.2008.10.013.

    [30]

    Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Analysis, 111 (2014), 66-81.doi: 10.1016/j.na.2014.08.012.

    [31]

    Y. Yang and D. Xiao, Influence of latent period and nonlinear incidence rate of the dynamics of SIRS epidemiological models, Discrete Contin. Dyn. Sys. (Ser.B), 13 (2010), 195-211.doi: 10.3934/dcdsb.2010.13.195.

    [32]

    L. Zhang, B. Li and J. Shang, Stability and travelling waves for a time-delayed population system with stage structure, Nonlinear Analysis: Real World Applications, 13 (2012), 1429-1440.doi: 10.1016/j.nonrwa.2011.11.007.

    [33]

    T. Zhang and W. Wang, Existence of thaveling wave solutions for influenza model with treatment, J. Math. Anal. Appl., 419 (2014), 469-495.doi: 10.1016/j.jmaa.2014.04.068.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(306) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return