May  2016, 15(3): 893-906. doi: 10.3934/cpaa.2016.15.893

Qualitative properties of solutions to an integral system associated with the Bessel potential

1. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China, China

2. 

Department of Mathematics, Wayne State University, Detroit, MI 48202

Received  August 2015 Revised  November 2015 Published  February 2016

In this paper, we study a differential system associated with the Bessel potential: \begin{eqnarray}\begin{cases} (I-\Delta)^{\frac{\alpha}{2}}u(x)=f_1(u(x),v(x)),\\ (I-\Delta)^{\frac{\alpha}{2}}v(x)=f_2(u(x),v(x)), \end{cases}\end{eqnarray} where $f_1(u(x),v(x))=\lambda_1u^{p_1}(x)+\mu_1v^{q_1}(x)+\gamma_1u^{\alpha_1}(x)v^{\beta_1}(x)$, $f_2(u(x),v(x))=\lambda_2u^{p_2}(x)+\mu_2v^{q_2}(x)+\gamma_2u^{\alpha_2}(x)v^{\beta_2}(x)$, $I$ is the identity operator and $\Delta=\sum_{j=1}^{n}\frac{\partial^2}{\partial x^2_j}$ is the Laplacian operator in $\mathbb{R}^n$. Under some appropriate conditions, this differential system is equivalent to an integral system of the Bessel potential type. By the regularity lifting method developed in [4] and [18], we obtain the regularity of solutions to the integral system. We then apply the moving planes method to obtain radial symmetry and monotonicity of positive solutions. We also establish the uniqueness theorem for radially symmetric solutions. Our nonlinear terms $f_1(u(x), v(x))$ and $f_2(u(x), v(x))$ are quite general and our results extend the earlier ones even in the case of single equation substantially.
Citation: Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893
References:
[1]

J. Bao, N. Lam and G. Lu, Polyharmonic equations with critical exponential growth in the whole space $\mathbbR^n$,, \emph{Discrete Contin. Dyn. Syst.}, 36 (2016), 577.   Google Scholar

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth,, \emph{Commun. Pure Appl. Math.}, 42 (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar

[3]

A. Chang and P. Yang, On uniqueness of solutions of nth order differential equations in conformal geometry,, \emph{Math. Res. Lett.}, 4 (1997), 91.  doi: 10.4310/MRL.1997.v4.n1.a9.  Google Scholar

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series on Diff. Equa. and Dyn. Sys., (2010).   Google Scholar

[5]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, \emph{Duke Math. J.}, 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, \emph{Commun. Pure Appl. Anal.}, 4 (2005), 1.   Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, \emph{Comm. Patial Differential Equations}, 30 (2005), 59.   Google Scholar

[9]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, \emph{Adv. Math.}, 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[10]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm. Math. Phys.}, 68 (1979), 209.   Google Scholar

[11]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, \emph{Mathematical Analysis and Applications}, (1981).   Google Scholar

[12]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1111.  doi: 10.3934/cpaa.2011.10.1111.  Google Scholar

[13]

X. Han, G. Lu and J. Zhu, Characterization of balls in terms of Bessel-potential integral equation,, \emph{J. Differential Equations}, 252 (2012), 1589.   Google Scholar

[14]

C. Jin and C. Li, Symmetry of solution to some systems of integral equations,, \emph{Proc. Amer. Math. Soc.}, 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[15]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, \emph{Arch. Ration. Mech. Anal.}, 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[16]

N. Lam and G. Lu, Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth,, \emph{Discrete Contin. Dyn. Syst.}, 32 (2012), 2187.  doi: 10.3934/dcds.2012.32.2187.  Google Scholar

[17]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, \emph{Commun. Pure Appl. Anal.}, 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[18]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, \emph{Adv. Math.}, 226 (2011), 2676.   Google Scholar

[19]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, \emph{J. Math. Anal. Appl.}, 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[20]

W. Reichel, Characterization of balls by Riesz-potentials,, \emph{Ann. Mat.}, 188 (2009), 235.  doi: 10.1007/s10231-008-0073-6.  Google Scholar

[21]

J. Serrin, A symmetry problem in potential theory,, \emph{Arch. Ration. Mech. Anal.}, 43 (1971), 304.   Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Grundlehren der Mathematischen Wissenschaften, (1983).   Google Scholar

[23]

E. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Ser. Appl. Math., (1970).   Google Scholar

show all references

References:
[1]

J. Bao, N. Lam and G. Lu, Polyharmonic equations with critical exponential growth in the whole space $\mathbbR^n$,, \emph{Discrete Contin. Dyn. Syst.}, 36 (2016), 577.   Google Scholar

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth,, \emph{Commun. Pure Appl. Math.}, 42 (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar

[3]

A. Chang and P. Yang, On uniqueness of solutions of nth order differential equations in conformal geometry,, \emph{Math. Res. Lett.}, 4 (1997), 91.  doi: 10.4310/MRL.1997.v4.n1.a9.  Google Scholar

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series on Diff. Equa. and Dyn. Sys., (2010).   Google Scholar

[5]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, \emph{Duke Math. J.}, 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, \emph{Commun. Pure Appl. Anal.}, 4 (2005), 1.   Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, \emph{Comm. Patial Differential Equations}, 30 (2005), 59.   Google Scholar

[9]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, \emph{Adv. Math.}, 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[10]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm. Math. Phys.}, 68 (1979), 209.   Google Scholar

[11]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, \emph{Mathematical Analysis and Applications}, (1981).   Google Scholar

[12]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1111.  doi: 10.3934/cpaa.2011.10.1111.  Google Scholar

[13]

X. Han, G. Lu and J. Zhu, Characterization of balls in terms of Bessel-potential integral equation,, \emph{J. Differential Equations}, 252 (2012), 1589.   Google Scholar

[14]

C. Jin and C. Li, Symmetry of solution to some systems of integral equations,, \emph{Proc. Amer. Math. Soc.}, 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[15]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, \emph{Arch. Ration. Mech. Anal.}, 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[16]

N. Lam and G. Lu, Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth,, \emph{Discrete Contin. Dyn. Syst.}, 32 (2012), 2187.  doi: 10.3934/dcds.2012.32.2187.  Google Scholar

[17]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, \emph{Commun. Pure Appl. Anal.}, 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[18]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, \emph{Adv. Math.}, 226 (2011), 2676.   Google Scholar

[19]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, \emph{J. Math. Anal. Appl.}, 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[20]

W. Reichel, Characterization of balls by Riesz-potentials,, \emph{Ann. Mat.}, 188 (2009), 235.  doi: 10.1007/s10231-008-0073-6.  Google Scholar

[21]

J. Serrin, A symmetry problem in potential theory,, \emph{Arch. Ration. Mech. Anal.}, 43 (1971), 304.   Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Grundlehren der Mathematischen Wissenschaften, (1983).   Google Scholar

[23]

E. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Ser. Appl. Math., (1970).   Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[4]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[7]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[19]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[20]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]