Advanced Search
Article Contents
Article Contents

Average error for spectral asymptotics on surfaces

Abstract Related Papers Cited by
  • Let $N(t)$ denote the eigenvalue counting function of the Laplacian on a compact surface of constant nonnegative curvature, with or without boundary. We define a refined asymptotic formula $\widetilde N(t)=At+Bt^{1/2}+C$, where the constants are expressed in terms of the geometry of the surface and its boundary, and consider the average error $A(t)=\frac 1 t \int^t_0 D(s)\,ds$ for $D(t)=N(t)-\widetilde N(t)$. We present a conjecture for the asymptotic behavior of $A(t)$, and study some examples that support the conjecture.
    Mathematics Subject Classification: 47A10, 58C40, 58J50.


    \begin{equation} \\ \end{equation}
  • [1]

    M. van den Berg and S. Srisatkunarajah, Heat flow and Brownian motion for a region in $\mathbb R^2$ with a polygonal boundary, Probab. Theory Related Fields, 86 (1990), 41-52.doi: 10.1007/BF01207512.


    P. Bleher, Distribution of energy levels of a quantum free particle on a surface of revolution, Duke Math. J., 74 (1994), 45-93.doi: 10.1215/S0012-7094-94-07403-6.


    P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhauser Boston, 1992.


    P. B. Gilkey, Asymptotic Formulae in Spectral Geometry, Chapman & Hall /CRC, Boca Raton 2004.


    J. Fox, E. Greif, D. Kaplan and R. StrichartzSpectrum of the Laplacian on Regular Polyhedral Surfaces, in preparation.


    V. Ivrii, Precise Spectral Asymptotics for Elliptic Operators, Lecture Notes in Math 1100 (1984), Springer, Berlin.


    S. Jayakar and R. Strichartz, Average number of lattice points in a disk, Comm. Pure Appl. Analysis, 15 (2016), 1-8.


    M. Kac, Can one hear the shape of a drum, Amer. Math. Monthly, 783 (1966), 1-23.


    D. V. Kosygin, A. A. Minasov and Ya. G. Sinai, Statistical properties of the spectra of Laplace Beltrami operators on Liouville surfaces, Russian Math. Surveys, 48 (1993), 142.doi: 10.1070/RM1993v048n04ABEH001052.


    H. Lapointe, I. Potterovich and Yu. Safarov, Average growth of the spectral function on a Riemannian manifold, Comm. P. D. E., 34 (2009), 581-615.doi: 10.1080/03605300802537453.


    T. Murray and R. Strichartz, Numerical investigations of spectral asymptotics on surfaces, in preparation.


    P. Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc., 40 (2003), 441-478.doi: 10.1090/S0273-0979-03-00991-1.


    C. Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian, Princeton Univ. Press, Princeton 2014.doi: 10.1515/9781400850549.


    R. Strichartz, Spectral asymptotics revisited, J. Fourier Anal. Appl., 18 (2012), 626-659.doi: 10.1007/s00041-012-9216-7.


    Yu. G. Safarov, Riesz means of the distribution function of the eigenvalues of an elliptic operator, J. Sov. Math., 49 (1990), 1210-1212.doi: 10.1007/BF02208718.


    R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Math. Soc. Fr., 91 (1963), 289-433.

  • 加载中

Article Metrics

HTML views() PDF downloads(58) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint