\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Average error for spectral asymptotics on surfaces

Abstract / Introduction Related Papers Cited by
  • Let $N(t)$ denote the eigenvalue counting function of the Laplacian on a compact surface of constant nonnegative curvature, with or without boundary. We define a refined asymptotic formula $\widetilde N(t)=At+Bt^{1/2}+C$, where the constants are expressed in terms of the geometry of the surface and its boundary, and consider the average error $A(t)=\frac 1 t \int^t_0 D(s)\,ds$ for $D(t)=N(t)-\widetilde N(t)$. We present a conjecture for the asymptotic behavior of $A(t)$, and study some examples that support the conjecture.
    Mathematics Subject Classification: 47A10, 58C40, 58J50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. van den Berg and S. Srisatkunarajah, Heat flow and Brownian motion for a region in $\mathbb R^2$ with a polygonal boundary, Probab. Theory Related Fields, 86 (1990), 41-52.doi: 10.1007/BF01207512.

    [2]

    P. Bleher, Distribution of energy levels of a quantum free particle on a surface of revolution, Duke Math. J., 74 (1994), 45-93.doi: 10.1215/S0012-7094-94-07403-6.

    [3]

    P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhauser Boston, 1992.

    [4]

    P. B. Gilkey, Asymptotic Formulae in Spectral Geometry, Chapman & Hall /CRC, Boca Raton 2004.

    [5]

    J. Fox, E. Greif, D. Kaplan and R. StrichartzSpectrum of the Laplacian on Regular Polyhedral Surfaces, in preparation.

    [6]

    V. Ivrii, Precise Spectral Asymptotics for Elliptic Operators, Lecture Notes in Math 1100 (1984), Springer, Berlin.

    [7]

    S. Jayakar and R. Strichartz, Average number of lattice points in a disk, Comm. Pure Appl. Analysis, 15 (2016), 1-8.

    [8]

    M. Kac, Can one hear the shape of a drum, Amer. Math. Monthly, 783 (1966), 1-23.

    [9]

    D. V. Kosygin, A. A. Minasov and Ya. G. Sinai, Statistical properties of the spectra of Laplace Beltrami operators on Liouville surfaces, Russian Math. Surveys, 48 (1993), 142.doi: 10.1070/RM1993v048n04ABEH001052.

    [10]

    H. Lapointe, I. Potterovich and Yu. Safarov, Average growth of the spectral function on a Riemannian manifold, Comm. P. D. E., 34 (2009), 581-615.doi: 10.1080/03605300802537453.

    [11]

    T. Murray and R. Strichartz, Numerical investigations of spectral asymptotics on surfaces, in preparation.

    [12]

    P. Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc., 40 (2003), 441-478.doi: 10.1090/S0273-0979-03-00991-1.

    [13]

    C. Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian, Princeton Univ. Press, Princeton 2014.doi: 10.1515/9781400850549.

    [14]

    R. Strichartz, Spectral asymptotics revisited, J. Fourier Anal. Appl., 18 (2012), 626-659.doi: 10.1007/s00041-012-9216-7.

    [15]

    Yu. G. Safarov, Riesz means of the distribution function of the eigenvalues of an elliptic operator, J. Sov. Math., 49 (1990), 1210-1212.doi: 10.1007/BF02208718.

    [16]

    R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Math. Soc. Fr., 91 (1963), 289-433.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return