• Previous Article
    Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian
  • CPAA Home
  • This Issue
  • Next Article
    On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian
May  2016, 15(3): 929-946. doi: 10.3934/cpaa.2016.15.929

Oscillatory integrals related to Carleson's theorem: fractional monomials

1. 

Endenicher Allee 60, 53115, Bonn, Germany

Received  August 2015 Revised  November 2015 Published  February 2016

Stein and Wainger [21] proved the $L^p$ bounds of the polynomial Carleson operator for all integer-power polynomials without linear term. In the present paper, we partially generalise this result to all fractional monomials in dimension one. Moreover, the connections with Carleson's theorem and the Hilbert transform along vector fields or (variable) curves %and a polynomial Carleson operator along the paraboloid are also discussed in details.
Citation: Shaoming Guo. Oscillatory integrals related to Carleson's theorem: fractional monomials. Communications on Pure and Applied Analysis, 2016, 15 (3) : 929-946. doi: 10.3934/cpaa.2016.15.929
References:
[1]

M. Bateman, Single annulus $L^p$ estimates for Hilbert transforms along vector fields, Rev. Mat. Iberoam., 29 (2013), 1021-1069. doi: 10.4171/RMI/748.

[2]

M. Bateman and C. Thiele, $L^p$ estimates for the Hilbert transforms along a one-variable vector field, Anal. PDE, 6 (2013), 1577-1600. doi: 10.2140/apde.2013.6.1577.

[3]

L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.

[4]

H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\mathbb{R}^2$, Bull. Amer. Math. Soc. (N.S.), 14 (1986), 263-267. doi: 10.1090/S0273-0979-1986-15433-9.

[5]

Y. Ding and H. Liu, Weighted $L^p$ boundedness of Carleson type maximal operators, Proc. Amer. Math. Soc., 140 (2012), 2739-2751. doi: 10.1090/S0002-9939-2011-11110-9.

[6]

C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math., 124 (1970), 9-36.

[7]

C. Fefferman, Pointwise convergence of Fourier series, Ann. of Math., 98 (1973), 551-571.

[8]

M. Folch-Gabayet and J. Wright, An oscillatory integral estimate associated to rational phases, J. Geom. Anal., 13 (2003), 291-299. doi: 10.1007/BF02930698.

[9]

M. Folch-Gabayet and J. Wright, Singular integral operators associated to curves with rational components, Trans. Amer. Math. Soc., 360 (2008), 1661-1679 (electronic). doi: 10.1090/S0002-9947-07-04349-8.

[10]

M. Folch-Gabayet and J. Wright, Weak type $(1, 1)$ bounds for oscillatory singular integrals with rational phases, Studia Math., 210 (2012), 57-76. doi: 10.4064/sm210-1-4.

[11]

I. I. Hirschman, On multiplier transformations, Duke Mathematical Journal, 26 (1959), 221-242.

[12]

M. Lacey and C. Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett., 7 (2000), 361-370. doi: 10.4310/MRL.2000.v7.n4.a1.

[13]

V. Lie, The (weak-$L^2$) boundedness of the quadratic Carleson operator, Geom. Funct. Anal., 19 (2009), 457-497. doi: 10.1007/s00039-009-0010-x.

[14]

V. Lie, The Polynomial Carleson Operator, arXiv:1105.4504.

[15]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc., 80 (1974), 106-108.

[16]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves. $II$, Amer. J. Math., 98 (1976), 395-403.

[17]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Hilbert transforms for convex curves, Duke Math. J., 50 (1983), 735-744. doi: 10.1215/S0012-7094-83-05036-6.

[18]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Maximal functions for convex curves, Duke Math. J., 52 (1985), 715-722. doi: 10.1215/S0012-7094-85-05237-8.

[19]

E. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, In Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) (pp. 316-335).

[20]

E. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. xiv+695 pp.

[21]

E. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem, Math. Res. Lett., 8 (2001), 789-800. doi: 10.4310/MRL.2001.v8.n6.a9.

[22]

S. Wainger, Special trigonometric series in $k$-dimensions, Mem. Amer. Math. Soc., 59 (1965), 102 pp.

show all references

References:
[1]

M. Bateman, Single annulus $L^p$ estimates for Hilbert transforms along vector fields, Rev. Mat. Iberoam., 29 (2013), 1021-1069. doi: 10.4171/RMI/748.

[2]

M. Bateman and C. Thiele, $L^p$ estimates for the Hilbert transforms along a one-variable vector field, Anal. PDE, 6 (2013), 1577-1600. doi: 10.2140/apde.2013.6.1577.

[3]

L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.

[4]

H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\mathbb{R}^2$, Bull. Amer. Math. Soc. (N.S.), 14 (1986), 263-267. doi: 10.1090/S0273-0979-1986-15433-9.

[5]

Y. Ding and H. Liu, Weighted $L^p$ boundedness of Carleson type maximal operators, Proc. Amer. Math. Soc., 140 (2012), 2739-2751. doi: 10.1090/S0002-9939-2011-11110-9.

[6]

C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math., 124 (1970), 9-36.

[7]

C. Fefferman, Pointwise convergence of Fourier series, Ann. of Math., 98 (1973), 551-571.

[8]

M. Folch-Gabayet and J. Wright, An oscillatory integral estimate associated to rational phases, J. Geom. Anal., 13 (2003), 291-299. doi: 10.1007/BF02930698.

[9]

M. Folch-Gabayet and J. Wright, Singular integral operators associated to curves with rational components, Trans. Amer. Math. Soc., 360 (2008), 1661-1679 (electronic). doi: 10.1090/S0002-9947-07-04349-8.

[10]

M. Folch-Gabayet and J. Wright, Weak type $(1, 1)$ bounds for oscillatory singular integrals with rational phases, Studia Math., 210 (2012), 57-76. doi: 10.4064/sm210-1-4.

[11]

I. I. Hirschman, On multiplier transformations, Duke Mathematical Journal, 26 (1959), 221-242.

[12]

M. Lacey and C. Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett., 7 (2000), 361-370. doi: 10.4310/MRL.2000.v7.n4.a1.

[13]

V. Lie, The (weak-$L^2$) boundedness of the quadratic Carleson operator, Geom. Funct. Anal., 19 (2009), 457-497. doi: 10.1007/s00039-009-0010-x.

[14]

V. Lie, The Polynomial Carleson Operator, arXiv:1105.4504.

[15]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc., 80 (1974), 106-108.

[16]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves. $II$, Amer. J. Math., 98 (1976), 395-403.

[17]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Hilbert transforms for convex curves, Duke Math. J., 50 (1983), 735-744. doi: 10.1215/S0012-7094-83-05036-6.

[18]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Maximal functions for convex curves, Duke Math. J., 52 (1985), 715-722. doi: 10.1215/S0012-7094-85-05237-8.

[19]

E. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, In Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) (pp. 316-335).

[20]

E. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. xiv+695 pp.

[21]

E. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem, Math. Res. Lett., 8 (2001), 789-800. doi: 10.4310/MRL.2001.v8.n6.a9.

[22]

S. Wainger, Special trigonometric series in $k$-dimensions, Mem. Amer. Math. Soc., 59 (1965), 102 pp.

[1]

Haixia Yu. Hilbert transforms along double variable fractional monomials. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1433-1446. doi: 10.3934/cpaa.2019069

[2]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[3]

Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883

[4]

Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411

[5]

Eric Todd Quinto, Hans Rullgård. Local singularity reconstruction from integrals over curves in $\mathbb{R}^3$. Inverse Problems and Imaging, 2013, 7 (2) : 585-609. doi: 10.3934/ipi.2013.7.585

[6]

Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263

[7]

Damiano Foschi. Some remarks on the $L^p-L^q$ boundedness of trigonometric sums and oscillatory integrals. Communications on Pure and Applied Analysis, 2005, 4 (3) : 569-588. doi: 10.3934/cpaa.2005.4.569

[8]

Mateusz Krukowski. Arzelà-Ascoli's theorem in uniform spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 283-294. doi: 10.3934/dcdsb.2018020

[9]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems and Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[10]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[11]

Shaobo Lin, Xingping Sun, Zongben Xu. Discretizing spherical integrals and its applications. Conference Publications, 2013, 2013 (special) : 499-514. doi: 10.3934/proc.2013.2013.499

[12]

Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5247-5287. doi: 10.3934/dcds.2020227

[13]

Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045

[14]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[15]

Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2829-2840. doi: 10.3934/dcdss.2020121

[16]

Chaolang Hu, Xiaoming He, Tao Lü. Euler-Maclaurin expansions and approximations of hypersingular integrals. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1355-1375. doi: 10.3934/dcdsb.2015.20.1355

[17]

Micol Amar, Virginia De Cicco. Lower semicontinuity for polyconvex integrals without coercivity assumptions. Evolution Equations and Control Theory, 2014, 3 (3) : 363-372. doi: 10.3934/eect.2014.3.363

[18]

David Ginzburg and Joseph Hundley. A new tower of Rankin-Selberg integrals. Electronic Research Announcements, 2006, 12: 56-62.

[19]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5661-5679. doi: 10.3934/dcdsb.2020375

[20]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control and Related Fields, 2021, 11 (3) : 653-679. doi: 10.3934/mcrf.2021017

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (170)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]