• Previous Article
    Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian
  • CPAA Home
  • This Issue
  • Next Article
    On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian
May  2016, 15(3): 929-946. doi: 10.3934/cpaa.2016.15.929

Oscillatory integrals related to Carleson's theorem: fractional monomials

1. 

Endenicher Allee 60, 53115, Bonn, Germany

Received  August 2015 Revised  November 2015 Published  February 2016

Stein and Wainger [21] proved the $L^p$ bounds of the polynomial Carleson operator for all integer-power polynomials without linear term. In the present paper, we partially generalise this result to all fractional monomials in dimension one. Moreover, the connections with Carleson's theorem and the Hilbert transform along vector fields or (variable) curves %and a polynomial Carleson operator along the paraboloid are also discussed in details.
Citation: Shaoming Guo. Oscillatory integrals related to Carleson's theorem: fractional monomials. Communications on Pure & Applied Analysis, 2016, 15 (3) : 929-946. doi: 10.3934/cpaa.2016.15.929
References:
[1]

M. Bateman, Single annulus $L^p$ estimates for Hilbert transforms along vector fields,, \emph{Rev. Mat. Iberoam.}, 29 (2013), 1021.  doi: 10.4171/RMI/748.  Google Scholar

[2]

M. Bateman and C. Thiele, $L^p$ estimates for the Hilbert transforms along a one-variable vector field,, \emph{Anal. PDE}, 6 (2013), 1577.  doi: 10.2140/apde.2013.6.1577.  Google Scholar

[3]

L. Carleson, On convergence and growth of partial sums of Fourier series,, \emph{Acta Math.}, 116 (1966), 135.   Google Scholar

[4]

H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\R^2$,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 14 (1986), 263.  doi: 10.1090/S0273-0979-1986-15433-9.  Google Scholar

[5]

Y. Ding and H. Liu, Weighted $L^p$ boundedness of Carleson type maximal operators,, \emph{Proc. Amer. Math. Soc.}, 140 (2012), 2739.  doi: 10.1090/S0002-9939-2011-11110-9.  Google Scholar

[6]

C. Fefferman, Inequalities for strongly singular convolution operators,, \emph{Acta Math.}, 124 (1970), 9.   Google Scholar

[7]

C. Fefferman, Pointwise convergence of Fourier series,, \emph{Ann. of Math.}, 98 (1973), 551.   Google Scholar

[8]

M. Folch-Gabayet and J. Wright, An oscillatory integral estimate associated to rational phases,, \emph{J. Geom. Anal.}, 13 (2003), 291.  doi: 10.1007/BF02930698.  Google Scholar

[9]

M. Folch-Gabayet and J. Wright, Singular integral operators associated to curves with rational components,, \emph{Trans. Amer. Math. Soc.}, 360 (2008), 1661.  doi: 10.1090/S0002-9947-07-04349-8.  Google Scholar

[10]

M. Folch-Gabayet and J. Wright, Weak type $(1, 1)$ bounds for oscillatory singular integrals with rational phases,, \emph{Studia Math.}, 210 (2012), 57.  doi: 10.4064/sm210-1-4.  Google Scholar

[11]

I. I. Hirschman, On multiplier transformations,, \emph{Duke Mathematical Journal}, 26 (1959), 221.   Google Scholar

[12]

M. Lacey and C. Thiele, A proof of boundedness of the Carleson operator,, \emph{Math. Res. Lett.}, 7 (2000), 361.  doi: 10.4310/MRL.2000.v7.n4.a1.  Google Scholar

[13]

V. Lie, The (weak-$L^2$) boundedness of the quadratic Carleson operator,, \emph{Geom. Funct. Anal.}, 19 (2009), 457.  doi: 10.1007/s00039-009-0010-x.  Google Scholar

[14]

V. Lie, The Polynomial Carleson Operator,, arXiv:1105.4504., ().   Google Scholar

[15]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves,, \emph{Bull. Amer. Math. Soc.}, 80 (1974), 106.   Google Scholar

[16]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves. $II$,, \emph{Amer. J. Math.}, 98 (1976), 395.   Google Scholar

[17]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Hilbert transforms for convex curves,, \emph{Duke Math. J.}, 50 (1983), 735.  doi: 10.1215/S0012-7094-83-05036-6.  Google Scholar

[18]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Maximal functions for convex curves,, \emph{Duke Math. J.}, 52 (1985), 715.  doi: 10.1215/S0012-7094-85-05237-8.  Google Scholar

[19]

E. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables,, In \emph{Singular Integrals} (Proc. Sympos. Pure Math., (1966), 316.   Google Scholar

[20]

E. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals,, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, (1993).   Google Scholar

[21]

E. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem,, \emph{Math. Res. Lett.}, 8 (2001), 789.  doi: 10.4310/MRL.2001.v8.n6.a9.  Google Scholar

[22]

S. Wainger, Special trigonometric series in $k$-dimensions,, \emph{Mem. Amer. Math. Soc.}, 59 (1965).   Google Scholar

show all references

References:
[1]

M. Bateman, Single annulus $L^p$ estimates for Hilbert transforms along vector fields,, \emph{Rev. Mat. Iberoam.}, 29 (2013), 1021.  doi: 10.4171/RMI/748.  Google Scholar

[2]

M. Bateman and C. Thiele, $L^p$ estimates for the Hilbert transforms along a one-variable vector field,, \emph{Anal. PDE}, 6 (2013), 1577.  doi: 10.2140/apde.2013.6.1577.  Google Scholar

[3]

L. Carleson, On convergence and growth of partial sums of Fourier series,, \emph{Acta Math.}, 116 (1966), 135.   Google Scholar

[4]

H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\R^2$,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 14 (1986), 263.  doi: 10.1090/S0273-0979-1986-15433-9.  Google Scholar

[5]

Y. Ding and H. Liu, Weighted $L^p$ boundedness of Carleson type maximal operators,, \emph{Proc. Amer. Math. Soc.}, 140 (2012), 2739.  doi: 10.1090/S0002-9939-2011-11110-9.  Google Scholar

[6]

C. Fefferman, Inequalities for strongly singular convolution operators,, \emph{Acta Math.}, 124 (1970), 9.   Google Scholar

[7]

C. Fefferman, Pointwise convergence of Fourier series,, \emph{Ann. of Math.}, 98 (1973), 551.   Google Scholar

[8]

M. Folch-Gabayet and J. Wright, An oscillatory integral estimate associated to rational phases,, \emph{J. Geom. Anal.}, 13 (2003), 291.  doi: 10.1007/BF02930698.  Google Scholar

[9]

M. Folch-Gabayet and J. Wright, Singular integral operators associated to curves with rational components,, \emph{Trans. Amer. Math. Soc.}, 360 (2008), 1661.  doi: 10.1090/S0002-9947-07-04349-8.  Google Scholar

[10]

M. Folch-Gabayet and J. Wright, Weak type $(1, 1)$ bounds for oscillatory singular integrals with rational phases,, \emph{Studia Math.}, 210 (2012), 57.  doi: 10.4064/sm210-1-4.  Google Scholar

[11]

I. I. Hirschman, On multiplier transformations,, \emph{Duke Mathematical Journal}, 26 (1959), 221.   Google Scholar

[12]

M. Lacey and C. Thiele, A proof of boundedness of the Carleson operator,, \emph{Math. Res. Lett.}, 7 (2000), 361.  doi: 10.4310/MRL.2000.v7.n4.a1.  Google Scholar

[13]

V. Lie, The (weak-$L^2$) boundedness of the quadratic Carleson operator,, \emph{Geom. Funct. Anal.}, 19 (2009), 457.  doi: 10.1007/s00039-009-0010-x.  Google Scholar

[14]

V. Lie, The Polynomial Carleson Operator,, arXiv:1105.4504., ().   Google Scholar

[15]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves,, \emph{Bull. Amer. Math. Soc.}, 80 (1974), 106.   Google Scholar

[16]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves. $II$,, \emph{Amer. J. Math.}, 98 (1976), 395.   Google Scholar

[17]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Hilbert transforms for convex curves,, \emph{Duke Math. J.}, 50 (1983), 735.  doi: 10.1215/S0012-7094-83-05036-6.  Google Scholar

[18]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Maximal functions for convex curves,, \emph{Duke Math. J.}, 52 (1985), 715.  doi: 10.1215/S0012-7094-85-05237-8.  Google Scholar

[19]

E. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables,, In \emph{Singular Integrals} (Proc. Sympos. Pure Math., (1966), 316.   Google Scholar

[20]

E. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals,, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, (1993).   Google Scholar

[21]

E. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem,, \emph{Math. Res. Lett.}, 8 (2001), 789.  doi: 10.4310/MRL.2001.v8.n6.a9.  Google Scholar

[22]

S. Wainger, Special trigonometric series in $k$-dimensions,, \emph{Mem. Amer. Math. Soc.}, 59 (1965).   Google Scholar

[1]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[11]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[15]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[18]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]