• Previous Article
    Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian
  • CPAA Home
  • This Issue
  • Next Article
    On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian
May  2016, 15(3): 929-946. doi: 10.3934/cpaa.2016.15.929

Oscillatory integrals related to Carleson's theorem: fractional monomials

1. 

Endenicher Allee 60, 53115, Bonn, Germany

Received  August 2015 Revised  November 2015 Published  February 2016

Stein and Wainger [21] proved the $L^p$ bounds of the polynomial Carleson operator for all integer-power polynomials without linear term. In the present paper, we partially generalise this result to all fractional monomials in dimension one. Moreover, the connections with Carleson's theorem and the Hilbert transform along vector fields or (variable) curves %and a polynomial Carleson operator along the paraboloid are also discussed in details.
Citation: Shaoming Guo. Oscillatory integrals related to Carleson's theorem: fractional monomials. Communications on Pure & Applied Analysis, 2016, 15 (3) : 929-946. doi: 10.3934/cpaa.2016.15.929
References:
[1]

M. Bateman, Single annulus $L^p$ estimates for Hilbert transforms along vector fields,, \emph{Rev. Mat. Iberoam.}, 29 (2013), 1021.  doi: 10.4171/RMI/748.  Google Scholar

[2]

M. Bateman and C. Thiele, $L^p$ estimates for the Hilbert transforms along a one-variable vector field,, \emph{Anal. PDE}, 6 (2013), 1577.  doi: 10.2140/apde.2013.6.1577.  Google Scholar

[3]

L. Carleson, On convergence and growth of partial sums of Fourier series,, \emph{Acta Math.}, 116 (1966), 135.   Google Scholar

[4]

H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\R^2$,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 14 (1986), 263.  doi: 10.1090/S0273-0979-1986-15433-9.  Google Scholar

[5]

Y. Ding and H. Liu, Weighted $L^p$ boundedness of Carleson type maximal operators,, \emph{Proc. Amer. Math. Soc.}, 140 (2012), 2739.  doi: 10.1090/S0002-9939-2011-11110-9.  Google Scholar

[6]

C. Fefferman, Inequalities for strongly singular convolution operators,, \emph{Acta Math.}, 124 (1970), 9.   Google Scholar

[7]

C. Fefferman, Pointwise convergence of Fourier series,, \emph{Ann. of Math.}, 98 (1973), 551.   Google Scholar

[8]

M. Folch-Gabayet and J. Wright, An oscillatory integral estimate associated to rational phases,, \emph{J. Geom. Anal.}, 13 (2003), 291.  doi: 10.1007/BF02930698.  Google Scholar

[9]

M. Folch-Gabayet and J. Wright, Singular integral operators associated to curves with rational components,, \emph{Trans. Amer. Math. Soc.}, 360 (2008), 1661.  doi: 10.1090/S0002-9947-07-04349-8.  Google Scholar

[10]

M. Folch-Gabayet and J. Wright, Weak type $(1, 1)$ bounds for oscillatory singular integrals with rational phases,, \emph{Studia Math.}, 210 (2012), 57.  doi: 10.4064/sm210-1-4.  Google Scholar

[11]

I. I. Hirschman, On multiplier transformations,, \emph{Duke Mathematical Journal}, 26 (1959), 221.   Google Scholar

[12]

M. Lacey and C. Thiele, A proof of boundedness of the Carleson operator,, \emph{Math. Res. Lett.}, 7 (2000), 361.  doi: 10.4310/MRL.2000.v7.n4.a1.  Google Scholar

[13]

V. Lie, The (weak-$L^2$) boundedness of the quadratic Carleson operator,, \emph{Geom. Funct. Anal.}, 19 (2009), 457.  doi: 10.1007/s00039-009-0010-x.  Google Scholar

[14]

V. Lie, The Polynomial Carleson Operator,, arXiv:1105.4504., ().   Google Scholar

[15]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves,, \emph{Bull. Amer. Math. Soc.}, 80 (1974), 106.   Google Scholar

[16]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves. $II$,, \emph{Amer. J. Math.}, 98 (1976), 395.   Google Scholar

[17]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Hilbert transforms for convex curves,, \emph{Duke Math. J.}, 50 (1983), 735.  doi: 10.1215/S0012-7094-83-05036-6.  Google Scholar

[18]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Maximal functions for convex curves,, \emph{Duke Math. J.}, 52 (1985), 715.  doi: 10.1215/S0012-7094-85-05237-8.  Google Scholar

[19]

E. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables,, In \emph{Singular Integrals} (Proc. Sympos. Pure Math., (1966), 316.   Google Scholar

[20]

E. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals,, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, (1993).   Google Scholar

[21]

E. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem,, \emph{Math. Res. Lett.}, 8 (2001), 789.  doi: 10.4310/MRL.2001.v8.n6.a9.  Google Scholar

[22]

S. Wainger, Special trigonometric series in $k$-dimensions,, \emph{Mem. Amer. Math. Soc.}, 59 (1965).   Google Scholar

show all references

References:
[1]

M. Bateman, Single annulus $L^p$ estimates for Hilbert transforms along vector fields,, \emph{Rev. Mat. Iberoam.}, 29 (2013), 1021.  doi: 10.4171/RMI/748.  Google Scholar

[2]

M. Bateman and C. Thiele, $L^p$ estimates for the Hilbert transforms along a one-variable vector field,, \emph{Anal. PDE}, 6 (2013), 1577.  doi: 10.2140/apde.2013.6.1577.  Google Scholar

[3]

L. Carleson, On convergence and growth of partial sums of Fourier series,, \emph{Acta Math.}, 116 (1966), 135.   Google Scholar

[4]

H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\R^2$,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 14 (1986), 263.  doi: 10.1090/S0273-0979-1986-15433-9.  Google Scholar

[5]

Y. Ding and H. Liu, Weighted $L^p$ boundedness of Carleson type maximal operators,, \emph{Proc. Amer. Math. Soc.}, 140 (2012), 2739.  doi: 10.1090/S0002-9939-2011-11110-9.  Google Scholar

[6]

C. Fefferman, Inequalities for strongly singular convolution operators,, \emph{Acta Math.}, 124 (1970), 9.   Google Scholar

[7]

C. Fefferman, Pointwise convergence of Fourier series,, \emph{Ann. of Math.}, 98 (1973), 551.   Google Scholar

[8]

M. Folch-Gabayet and J. Wright, An oscillatory integral estimate associated to rational phases,, \emph{J. Geom. Anal.}, 13 (2003), 291.  doi: 10.1007/BF02930698.  Google Scholar

[9]

M. Folch-Gabayet and J. Wright, Singular integral operators associated to curves with rational components,, \emph{Trans. Amer. Math. Soc.}, 360 (2008), 1661.  doi: 10.1090/S0002-9947-07-04349-8.  Google Scholar

[10]

M. Folch-Gabayet and J. Wright, Weak type $(1, 1)$ bounds for oscillatory singular integrals with rational phases,, \emph{Studia Math.}, 210 (2012), 57.  doi: 10.4064/sm210-1-4.  Google Scholar

[11]

I. I. Hirschman, On multiplier transformations,, \emph{Duke Mathematical Journal}, 26 (1959), 221.   Google Scholar

[12]

M. Lacey and C. Thiele, A proof of boundedness of the Carleson operator,, \emph{Math. Res. Lett.}, 7 (2000), 361.  doi: 10.4310/MRL.2000.v7.n4.a1.  Google Scholar

[13]

V. Lie, The (weak-$L^2$) boundedness of the quadratic Carleson operator,, \emph{Geom. Funct. Anal.}, 19 (2009), 457.  doi: 10.1007/s00039-009-0010-x.  Google Scholar

[14]

V. Lie, The Polynomial Carleson Operator,, arXiv:1105.4504., ().   Google Scholar

[15]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves,, \emph{Bull. Amer. Math. Soc.}, 80 (1974), 106.   Google Scholar

[16]

A. Nagel, N. Riviere and S. Wainger, On Hilbert transforms along curves. $II$,, \emph{Amer. J. Math.}, 98 (1976), 395.   Google Scholar

[17]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Hilbert transforms for convex curves,, \emph{Duke Math. J.}, 50 (1983), 735.  doi: 10.1215/S0012-7094-83-05036-6.  Google Scholar

[18]

A. Nagel, J. Vance, S. Wainger and D. Weinberg, Maximal functions for convex curves,, \emph{Duke Math. J.}, 52 (1985), 715.  doi: 10.1215/S0012-7094-85-05237-8.  Google Scholar

[19]

E. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables,, In \emph{Singular Integrals} (Proc. Sympos. Pure Math., (1966), 316.   Google Scholar

[20]

E. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals,, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, (1993).   Google Scholar

[21]

E. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem,, \emph{Math. Res. Lett.}, 8 (2001), 789.  doi: 10.4310/MRL.2001.v8.n6.a9.  Google Scholar

[22]

S. Wainger, Special trigonometric series in $k$-dimensions,, \emph{Mem. Amer. Math. Soc.}, 59 (1965).   Google Scholar

[1]

Haixia Yu. Hilbert transforms along double variable fractional monomials. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1433-1446. doi: 10.3934/cpaa.2019069

[2]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[3]

Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883

[4]

Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411

[5]

Eric Todd Quinto, Hans Rullgård. Local singularity reconstruction from integrals over curves in $\mathbb{R}^3$. Inverse Problems & Imaging, 2013, 7 (2) : 585-609. doi: 10.3934/ipi.2013.7.585

[6]

Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263

[7]

Damiano Foschi. Some remarks on the $L^p-L^q$ boundedness of trigonometric sums and oscillatory integrals. Communications on Pure & Applied Analysis, 2005, 4 (3) : 569-588. doi: 10.3934/cpaa.2005.4.569

[8]

Mateusz Krukowski. Arzelà-Ascoli's theorem in uniform spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 283-294. doi: 10.3934/dcdsb.2018020

[9]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[10]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[11]

Shaobo Lin, Xingping Sun, Zongben Xu. Discretizing spherical integrals and its applications. Conference Publications, 2013, 2013 (special) : 499-514. doi: 10.3934/proc.2013.2013.499

[12]

Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045

[13]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[14]

Chaolang Hu, Xiaoming He, Tao Lü. Euler-Maclaurin expansions and approximations of hypersingular integrals. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1355-1375. doi: 10.3934/dcdsb.2015.20.1355

[15]

Micol Amar, Virginia De Cicco. Lower semicontinuity for polyconvex integrals without coercivity assumptions. Evolution Equations & Control Theory, 2014, 3 (3) : 363-372. doi: 10.3934/eect.2014.3.363

[16]

David Ginzburg and Joseph Hundley. A new tower of Rankin-Selberg integrals. Electronic Research Announcements, 2006, 12: 56-62.

[17]

Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020121

[18]

Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619

[19]

David Brander. Results related to generalizations of Hilbert's non-immersibility theorem for the hyperbolic plane. Electronic Research Announcements, 2008, 15: 8-16. doi: 10.3934/era.2008.15.8

[20]

Tuan Anh Dao, Michael Reissig. $ L^1 $ estimates for oscillating integrals and their applications to semi-linear models with $ \sigma $-evolution like structural damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]