May  2016, 15(3): 947-964. doi: 10.3934/cpaa.2016.15.947

Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian

1. 

College of Mathematics and Econometrics, Hunan University, Changsha 410082, China

Received  August 2015 Revised  December 2015 Published  February 2016

We study entire solutions in $R$ of the nonlocal system $(-\Delta)^{s}U+\nabla W(U)=(0,0)$ where $W:R^{2}\rightarrow R$ is a double well potential. We seek solutions $U$ which are heteroclinic in the sense that they connect at infinity a pair of global minima of $W$ and are also global minimizers. Under some symmetric assumptions on potential $W$, we prove the existence of such solutions for $s>\frac{1}{2}$, and give asymptotic behavior as $x\rightarrow\pm\infty$.
Citation: Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947
References:
[1]

S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in $\R^{2}$ for an Allen-Cahn system with multiple well potential,, \emph{Calculus of Variations and Partial Differential Equations}, 5 (1997), 359. doi: 10.1007/s005260050071. Google Scholar

[2]

L. Bronsard, C. Gui and M. Schatzman, A three layered minimizer in $\R^{2}$ for a variational problem with a symmetric three well potential,, \emph{Communications on Pure and Applied Mathematics}, 49 (1996), 677. doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.3.CO;2-6. Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Communications in Partial Differential Equations}, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[4]

X. Cabré and J. Solá-Morales, Layer solutions in a half-space for boundary reactions,, \emph{Communications on Pure and Applied Mathematics}, 58 (2005), 1678. doi: 10.1002/cpa.20093. Google Scholar

[5]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates,, \emph{Annales de l'Institut Henri Poincare (C) Non Linear Analysis}, 31 (2014), 23. doi: 10.1016/j.anihpc.2013.02.001. Google Scholar

[6]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions,, \emph{Transactions of the American Mathematical Society}, 367 (2015), 911. doi: 10.1090/S0002-9947-2014-05906-0. Google Scholar

[7]

X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations,, \emph{Calculus of Variations and Partial Differential Equations}, 49 (2014), 233. doi: 10.1007/s00526-012-0580-6. Google Scholar

[8]

X. Cabré and E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian,, \emph{Discrete and Continuous Dynamical System}, 28 (2010), 1179. doi: 10.3934/dcds.2010.28.1179. Google Scholar

[9]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bulletin des Sciences Math\'ematiques}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[10]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, \emph{Communications in Partial Differential Equations}, 7 (1982), 77. doi: 10.1080/03605308208820218. Google Scholar

[11]

G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm,, \emph{Annali di Matematica Pura ed Applicata}, 192 (2013), 673. doi: 10.1007/s10231-011-0243-9. Google Scholar

[12]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Communications on Pure and Applied Mathematics}, 60 (2007), 67. doi: 10.1002/cpa.20153. Google Scholar

[13]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result,, \emph{Journal of Functional Analysis}, 256 (2009), 1842. doi: 10.1016/j.jfa.2009.01.020. Google Scholar

show all references

References:
[1]

S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in $\R^{2}$ for an Allen-Cahn system with multiple well potential,, \emph{Calculus of Variations and Partial Differential Equations}, 5 (1997), 359. doi: 10.1007/s005260050071. Google Scholar

[2]

L. Bronsard, C. Gui and M. Schatzman, A three layered minimizer in $\R^{2}$ for a variational problem with a symmetric three well potential,, \emph{Communications on Pure and Applied Mathematics}, 49 (1996), 677. doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.3.CO;2-6. Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Communications in Partial Differential Equations}, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[4]

X. Cabré and J. Solá-Morales, Layer solutions in a half-space for boundary reactions,, \emph{Communications on Pure and Applied Mathematics}, 58 (2005), 1678. doi: 10.1002/cpa.20093. Google Scholar

[5]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates,, \emph{Annales de l'Institut Henri Poincare (C) Non Linear Analysis}, 31 (2014), 23. doi: 10.1016/j.anihpc.2013.02.001. Google Scholar

[6]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions,, \emph{Transactions of the American Mathematical Society}, 367 (2015), 911. doi: 10.1090/S0002-9947-2014-05906-0. Google Scholar

[7]

X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations,, \emph{Calculus of Variations and Partial Differential Equations}, 49 (2014), 233. doi: 10.1007/s00526-012-0580-6. Google Scholar

[8]

X. Cabré and E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian,, \emph{Discrete and Continuous Dynamical System}, 28 (2010), 1179. doi: 10.3934/dcds.2010.28.1179. Google Scholar

[9]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bulletin des Sciences Math\'ematiques}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[10]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, \emph{Communications in Partial Differential Equations}, 7 (1982), 77. doi: 10.1080/03605308208820218. Google Scholar

[11]

G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm,, \emph{Annali di Matematica Pura ed Applicata}, 192 (2013), 673. doi: 10.1007/s10231-011-0243-9. Google Scholar

[12]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Communications on Pure and Applied Mathematics}, 60 (2007), 67. doi: 10.1002/cpa.20153. Google Scholar

[13]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result,, \emph{Journal of Functional Analysis}, 256 (2009), 1842. doi: 10.1016/j.jfa.2009.01.020. Google Scholar

[1]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[2]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[3]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

[4]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[5]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[6]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[7]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[8]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[9]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[10]

Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065

[11]

Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088

[12]

Giorgio Fusco, Francesco Leonetti, Cristina Pignotti. On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 725-742. doi: 10.3934/dcds.2017030

[13]

Michał Kowalczyk, Yong Liu, Frank Pacard. Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks & Heterogeneous Media, 2012, 7 (4) : 837-855. doi: 10.3934/nhm.2012.7.837

[14]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[15]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[16]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[17]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[18]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[19]

Giorgio Fusco. On some elementary properties of vector minimizers of the Allen-Cahn energy. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1045-1060. doi: 10.3934/cpaa.2014.13.1045

[20]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]