-
Previous Article
Positive solutions for parametric $p$-Laplacian equations
- CPAA Home
- This Issue
- Next Article
Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers
1. | University of Memphis, Department of Mathematical Sciences, 373 Dunn Hall, Memphis, TN 38152 |
2. | Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 |
References:
[1] |
P. Ausher, S. Hofmann, M. Lacey, A. McIntosh and P. Tehamitchian, The solution of the Kato square root problemm for second order elliptic operators in $R^n$, Annals of Mathematics, 156 (2002), 633-654.
doi: 10.2307/3597201. |
[2] |
G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method, Applicationes Mathematicae, 35 (2008), 259-280.
doi: 10.4064/am35-3-2. |
[3] |
G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, invited paper, special issue of Georgian Mathematical Journal, 15 (2008), 403-437; dedicated to the memory of J. L. Lions; J. Mawhin, editor. |
[4] |
G. Avalos and R. Triggiani, The coupled PDE-system arising in fluid-structure interaction. Part I: Explicit semigroup generator and its spectral properties, AMS Contemporary Mathematics, Fluids and Waves, 440 (2007), 15-55.
doi: 10.1090/conm/440/08475. |
[5] |
G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discr. & Cont. Dynam. Systems, 22 (2008), 817-833 (invited paper).
doi: 10.3934/dcds.2008.22.817. |
[6] |
G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system, Discr. & Cont. Dynam. Systems DCDS-S, 2 (2009), 417-448.
doi: 10.3934/dcdss.2009.2.417. |
[7] |
G. Avalos and R. Triggiani, A coupled parabolic-hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis, Applicable Analysis, 88 (2009), 1357-1396.
doi: 10.1080/00036810903278513. |
[8] |
G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Eqns., 9 (2009), 341-370.
doi: 10.1007/s00028-009-0015-9. |
[9] |
G. Avalos and R. Triggiani, Rational decay rates for a PDE heat-structure interaction: A frequency domain approach, Evolution Equations and Control Theory, 2 (2013), 233-253.
doi: 10.3934/eect.2013.2.233. |
[10] |
G. Avalos and R. Triggiani, Fluid-structure interaction with and without internal dissipation of the structure: A contrast in stability, Evolution Equations and Control Theory, 2 (2013), 563-598, special issue by invitation on the occasion of W. Littman's retirement.
doi: 10.3934/eect.2013.2.563. |
[11] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, 2nd edition, Birkhauser, 2007, 575 pages.
doi: 10.1007/978-0-8176-4581-6. |
[12] |
S. Canic, A. Mikelic and J. Tambaca, A two-dimensional effective model describing fluid-structure interaction in blood flow: analysis, simulation and experimental validation, Compte Rendus Mechanique Acad. Sci. Paris, 333 (2005), 867-883. |
[13] |
S. Canic, D. Lamponi, A. Mikelic and J. Tambaca, Self-consistent effective equations modeling blood flow in medium-t-large compliant arteries, Multiscale Model. Simul., 3 (2005), 559-596.
doi: 10.1137/030602605. |
[14] |
G. Chen and D.L. Russel, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math., (1982), 433-454. |
[15] |
S. Chen and R. Triggiani, Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems: The case $\alpha = 1/2$, Springer-Verlag Lecture Notes in Mathematics, 1354 (1988), 234-256. Proceedings of Seminar on Approximation and Optimization, University of Havana, Cuba (January 1987).
doi: 10.1007/BFb0089601. |
[16] |
S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems: The case $1/2 \leq \alpha \leq 1$, Pacific J. Math., 136 (1989), 15-55. |
[17] |
S. Chen and R. Triggiani, Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications, J. Diff. Eqns., 88 (1990), 279-293.
doi: 10.1016/0022-0396(90)90100-4. |
[18] |
S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle perturbation, Proceedings Amer. Math. Soc., 110 (1990), 401-415.
doi: 10.2307/2048084. |
[19] |
Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discr. Dynam. Sys., 9 (2003), 633-650.
doi: 10.3934/dcds.2003.9.633. |
[20] |
D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad., 43 (1967), 82-86. |
[21] |
P. Grisvard, Characterization de qualques espaces d' interpolation, Arch. Pat. Mech. Anal., 25 (1967), 40-63. |
[22] |
M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity 27 (2014), 467-499.
doi: 10.1088/0951-7715/27/3/467. |
[23] |
T. Kato, Fractional powers of dissipative operators, J.Math.Soc. Japan , 13 (1961), 246-274. |
[24] |
V. Komornik, Exact controllability and stabilization. The multiplier method, Masson, Paris; John Wiley & Sons Ltd, Chichester (1994), 156 pp. |
[25] |
I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction, Indiana Univ. Math. J., 61 (2012), 1817-1859.
doi: 10.1512/iumj.2012.61.4746. |
[26] |
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, J. Differential Equations, 247 (2009), 1452-1478.
doi: 10.1016/j.jde.2009.06.005. |
[27] |
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions for a fluid structure interaction system, Adv. Differential Equations, 15 (2010), 231-254. |
[28] |
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary, Nonlinearity, 24 (2011), 159-176.
doi: 10.1088/0951-7715/24/1/008. |
[29] |
I. Lasiecka, Unified theory for abstract parabolic boundary problems-a semigroup approach, Appl. Math. & Optimiz., 6 (1980), 31-62.
doi: 10.1007/BF01442900. |
[30] |
I. Lasiecka and Y. Lu, Stabilization of a fluid structure interaction with nonlinear damping, Control Cybernet., 42 (2013), 155-181. |
[31] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories I, Abstract Parabolic Systems, Encyclopedia of Mathematics and Its Applications Series, Cambridge University Press, January 2000. |
[32] |
J.L. Lions, Quelques Methods de Resolution des Problemes aux Limits Nonlinearies, Dunod. Paris, 1969. |
[33] |
J.L. Lions, Especes d'interpolation et domaines de puissances fractionnaires d'openateurs. J. Math Soc., 14 (1962), 233-241. |
[34] |
J.L. Lions and E. Magenes, Nonhomogeneous Boundary Value Propblems and Applications, Vol. I,, Springer-Verlag, (1972), 357 pp. |
[35] |
Y. Lu, Uniform stabilization to equilibrium of a nonlinear fluid-structure interaction model, Nonlinear Anal. Real World Appl., 25 (2015), 51-63.
doi: 10.1016/j.nonrwa.2015.02.006. |
[36] |
A. McIntosh, On the comparability of $A^{1/2} $and $A^{*1/2}$, Proceedings AMS, 32 (1972), 430-434. |
[37] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[38] |
J. Pruss, On the spectrum of $C_0$ semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.
doi: 10.2307/1999112. |
[39] |
A. Taylor, and D. Lay, Introduction to Functional Analysis, 2nd edition, 1980, Wiley. |
[40] |
R. Triggiani, A heat-viscoelastic structure interaction model with Neumann or Dirichlet boundary control at the interface: optimal regularity, control theoretic implications, Applied Mathematics and Optimization, special issue in memory of A.V. Balakrishnan, to appear. |
[41] |
R. Triggiani, A matrix-valued generator $\mathcal{A}$ with strong boundary coupling: a critical subspace of $\mathcal{D}((-\mathcal{A})^{1/2})$ and $\mathcal{D}((-\mathcal{A}^*)^{1/2})$ and implications, Evolution Equations and Control Theory, vol 5, No.1, March 2016. |
show all references
References:
[1] |
P. Ausher, S. Hofmann, M. Lacey, A. McIntosh and P. Tehamitchian, The solution of the Kato square root problemm for second order elliptic operators in $R^n$, Annals of Mathematics, 156 (2002), 633-654.
doi: 10.2307/3597201. |
[2] |
G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method, Applicationes Mathematicae, 35 (2008), 259-280.
doi: 10.4064/am35-3-2. |
[3] |
G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, invited paper, special issue of Georgian Mathematical Journal, 15 (2008), 403-437; dedicated to the memory of J. L. Lions; J. Mawhin, editor. |
[4] |
G. Avalos and R. Triggiani, The coupled PDE-system arising in fluid-structure interaction. Part I: Explicit semigroup generator and its spectral properties, AMS Contemporary Mathematics, Fluids and Waves, 440 (2007), 15-55.
doi: 10.1090/conm/440/08475. |
[5] |
G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discr. & Cont. Dynam. Systems, 22 (2008), 817-833 (invited paper).
doi: 10.3934/dcds.2008.22.817. |
[6] |
G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system, Discr. & Cont. Dynam. Systems DCDS-S, 2 (2009), 417-448.
doi: 10.3934/dcdss.2009.2.417. |
[7] |
G. Avalos and R. Triggiani, A coupled parabolic-hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis, Applicable Analysis, 88 (2009), 1357-1396.
doi: 10.1080/00036810903278513. |
[8] |
G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Eqns., 9 (2009), 341-370.
doi: 10.1007/s00028-009-0015-9. |
[9] |
G. Avalos and R. Triggiani, Rational decay rates for a PDE heat-structure interaction: A frequency domain approach, Evolution Equations and Control Theory, 2 (2013), 233-253.
doi: 10.3934/eect.2013.2.233. |
[10] |
G. Avalos and R. Triggiani, Fluid-structure interaction with and without internal dissipation of the structure: A contrast in stability, Evolution Equations and Control Theory, 2 (2013), 563-598, special issue by invitation on the occasion of W. Littman's retirement.
doi: 10.3934/eect.2013.2.563. |
[11] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, 2nd edition, Birkhauser, 2007, 575 pages.
doi: 10.1007/978-0-8176-4581-6. |
[12] |
S. Canic, A. Mikelic and J. Tambaca, A two-dimensional effective model describing fluid-structure interaction in blood flow: analysis, simulation and experimental validation, Compte Rendus Mechanique Acad. Sci. Paris, 333 (2005), 867-883. |
[13] |
S. Canic, D. Lamponi, A. Mikelic and J. Tambaca, Self-consistent effective equations modeling blood flow in medium-t-large compliant arteries, Multiscale Model. Simul., 3 (2005), 559-596.
doi: 10.1137/030602605. |
[14] |
G. Chen and D.L. Russel, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math., (1982), 433-454. |
[15] |
S. Chen and R. Triggiani, Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems: The case $\alpha = 1/2$, Springer-Verlag Lecture Notes in Mathematics, 1354 (1988), 234-256. Proceedings of Seminar on Approximation and Optimization, University of Havana, Cuba (January 1987).
doi: 10.1007/BFb0089601. |
[16] |
S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems: The case $1/2 \leq \alpha \leq 1$, Pacific J. Math., 136 (1989), 15-55. |
[17] |
S. Chen and R. Triggiani, Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications, J. Diff. Eqns., 88 (1990), 279-293.
doi: 10.1016/0022-0396(90)90100-4. |
[18] |
S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle perturbation, Proceedings Amer. Math. Soc., 110 (1990), 401-415.
doi: 10.2307/2048084. |
[19] |
Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discr. Dynam. Sys., 9 (2003), 633-650.
doi: 10.3934/dcds.2003.9.633. |
[20] |
D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad., 43 (1967), 82-86. |
[21] |
P. Grisvard, Characterization de qualques espaces d' interpolation, Arch. Pat. Mech. Anal., 25 (1967), 40-63. |
[22] |
M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity 27 (2014), 467-499.
doi: 10.1088/0951-7715/27/3/467. |
[23] |
T. Kato, Fractional powers of dissipative operators, J.Math.Soc. Japan , 13 (1961), 246-274. |
[24] |
V. Komornik, Exact controllability and stabilization. The multiplier method, Masson, Paris; John Wiley & Sons Ltd, Chichester (1994), 156 pp. |
[25] |
I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction, Indiana Univ. Math. J., 61 (2012), 1817-1859.
doi: 10.1512/iumj.2012.61.4746. |
[26] |
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, J. Differential Equations, 247 (2009), 1452-1478.
doi: 10.1016/j.jde.2009.06.005. |
[27] |
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions for a fluid structure interaction system, Adv. Differential Equations, 15 (2010), 231-254. |
[28] |
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary, Nonlinearity, 24 (2011), 159-176.
doi: 10.1088/0951-7715/24/1/008. |
[29] |
I. Lasiecka, Unified theory for abstract parabolic boundary problems-a semigroup approach, Appl. Math. & Optimiz., 6 (1980), 31-62.
doi: 10.1007/BF01442900. |
[30] |
I. Lasiecka and Y. Lu, Stabilization of a fluid structure interaction with nonlinear damping, Control Cybernet., 42 (2013), 155-181. |
[31] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories I, Abstract Parabolic Systems, Encyclopedia of Mathematics and Its Applications Series, Cambridge University Press, January 2000. |
[32] |
J.L. Lions, Quelques Methods de Resolution des Problemes aux Limits Nonlinearies, Dunod. Paris, 1969. |
[33] |
J.L. Lions, Especes d'interpolation et domaines de puissances fractionnaires d'openateurs. J. Math Soc., 14 (1962), 233-241. |
[34] |
J.L. Lions and E. Magenes, Nonhomogeneous Boundary Value Propblems and Applications, Vol. I,, Springer-Verlag, (1972), 357 pp. |
[35] |
Y. Lu, Uniform stabilization to equilibrium of a nonlinear fluid-structure interaction model, Nonlinear Anal. Real World Appl., 25 (2015), 51-63.
doi: 10.1016/j.nonrwa.2015.02.006. |
[36] |
A. McIntosh, On the comparability of $A^{1/2} $and $A^{*1/2}$, Proceedings AMS, 32 (1972), 430-434. |
[37] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[38] |
J. Pruss, On the spectrum of $C_0$ semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.
doi: 10.2307/1999112. |
[39] |
A. Taylor, and D. Lay, Introduction to Functional Analysis, 2nd edition, 1980, Wiley. |
[40] |
R. Triggiani, A heat-viscoelastic structure interaction model with Neumann or Dirichlet boundary control at the interface: optimal regularity, control theoretic implications, Applied Mathematics and Optimization, special issue in memory of A.V. Balakrishnan, to appear. |
[41] |
R. Triggiani, A matrix-valued generator $\mathcal{A}$ with strong boundary coupling: a critical subspace of $\mathcal{D}((-\mathcal{A})^{1/2})$ and $\mathcal{D}((-\mathcal{A}^*)^{1/2})$ and implications, Evolution Equations and Control Theory, vol 5, No.1, March 2016. |
[1] |
Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations and Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008 |
[2] |
Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008 |
[3] |
Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192 |
[4] |
Maykel Belluzi, Flank D. M. Bezerra, Marcelo J. D. Nascimento. On spectral and fractional powers of damped wave equations. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022071 |
[5] |
Aaron A. Allen, Scott W. Hansen. Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1279-1292. doi: 10.3934/dcdsb.2010.14.1279 |
[6] |
Chulan Zeng. Time analyticity of the biharmonic heat equation, the heat equation with potentials and some nonlinear heat equations. Communications on Pure and Applied Analysis, 2022, 21 (3) : 749-783. doi: 10.3934/cpaa.2021197 |
[7] |
Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201 |
[8] |
Tae Gab Ha. On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evolution Equations and Control Theory, 2018, 7 (2) : 281-291. doi: 10.3934/eect.2018014 |
[9] |
Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425 |
[10] |
Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543 |
[11] |
Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022009 |
[12] |
Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 781-792. doi: 10.3934/eect.2021025 |
[13] |
Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, 2021, 29 (5) : 3081-3096. doi: 10.3934/era.2021027 |
[14] |
Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control and Related Fields, 2020, 10 (1) : 1-26. doi: 10.3934/mcrf.2019027 |
[15] |
Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109 |
[16] |
Fausto Ferrari, Michele Miranda Jr, Diego Pallara, Andrea Pinamonti, Yannick Sire. Fractional Laplacians, perimeters and heat semigroups in Carnot groups. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 477-491. doi: 10.3934/dcdss.2018026 |
[17] |
Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure and Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375 |
[18] |
Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021038 |
[19] |
Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295 |
[20] |
Ruy Coimbra Charão, Juan Torres Espinoza, Ryo Ikehata. A second order fractional differential equation under effects of a super damping. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4433-4454. doi: 10.3934/cpaa.2020202 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]