-
Previous Article
Scattering for a nonlinear Schrödinger equation with a potential
- CPAA Home
- This Issue
-
Next Article
Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers
Positive solutions for parametric $p$-Laplacian equations
1. | Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780 |
2. | Technological Educational Institute of Athens, Department of Mathematics, Athens 12210, Greece |
References:
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Multiple positive solutions for a $p$-Laplacian Dirichlet problem with a superdiffusive reaction, Houston J. Math., 36 (2010), 313-332. |
[2] |
D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplacian operator, Comm. Partial Differential Equations, 31 (2006), 849-865.
doi: 10.1080/03605300500394447. |
[3] |
G.Barletta, R.Livrea and N. S. Papageorgiou, A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian, Comm. Pure Appl. Anal., 13 (2014), 1075-1086. |
[4] |
G.D'Agui, S.Marano and N. S. Papageorgiou, Multiple solutions to a Neumann problem with equidiffusive reaction, Disc. Cont. Dyn. Syst-Ser. S5 (2012), 765-777. |
[5] |
Y. Dong, A priori estimates and existence of positive solutions for a quasilinear elliptic equation, J. London Math. Soc., 72 (2005), 645-662.
doi: 10.1112/S0024610705006848. |
[6] |
W. Dong and J. J. Chen, Existence and multiplicity results for a degenerate elliptic equation, Acta Math. Sinica (English Series), 22 (2006), 665-670.
doi: 10.1007/s10114-005-0696-0. |
[7] |
J. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385-404.
doi: 10.1142/S0219199700000190. |
[8] |
J. Garcia Melian and J. Sabina de Lis, Stationary profiles of degenerate problems when a parameter is large, Differential Intergal Equations, 13 (2000), 1201-1232. |
[9] |
L. Gasinski and N. S.Papageorgiou, Nonlinear Analysis, Chapman Hall/CRC, Boca Raton, 2006. |
[10] |
L. Gasinski and N. S . Papageorgiou, Bifurcation type results for nonlinear parametric elliptic equations, Proc. Royal Soc. Edinburgh, 142A (2012), 595-623.
doi: 10.1017/S0308210511000126. |
[11] |
L. Gasinski and N. S. Papageorgiou, Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential, Comm. Pure Appl. Anal., 12 (2013), 1985-1999.
doi: 10.3934/cpaa.2013.12.1985. |
[12] |
L.Gasinski and N. S. Papageorgiou, A pair of positive solutions for $(p,q)$-equations with combined nonlinearities, Comm. Pure Appl. Anal., 13 (2014), 203-215. |
[13] |
L.Gasinski and N. S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Comm. Pure Appl. Anal., 13 (2014), 1491-1512. |
[14] |
M. Guedda and L. Veron, Bifurcation phenomena associated to the $p$-Laplace operator, Trans. Amer. Math. Soc., 310 (1988), 419-431.
doi: 10.2307/2001132. |
[15] |
M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.
doi: 10.1016/0362-546X(89)90020-5. |
[16] |
Z. Guo and Z. Zhang, $W^{1,p}\;$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286 (2003), 32-50.
doi: 10.1016/S0022-247X(03)00282-8. |
[17] |
M. E. Gurtin and R. C. Mac Camy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49. |
[18] |
S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$ -Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J., 62 (2010), 137-162.
doi: 10.2748/tmj/1270041030. |
[19] |
S. Hu and N. S. Papageorgiou, Double resonance for Dirichlet problems with unbounded and indefinite potential and competing nonlinearities, Comm. Pure Appl. Anal., 11 (2012), 2005-2021.
doi: 10.3934/cpaa.2012.11.2005. |
[20] |
S. Hu and N.S.Papageorgiou, Nonlinear Neumann problems with indefinite potential and concave terms, Comm. Pure Appl. Anal., 14 (2015), 2561-2616. |
[21] |
A. Iannizzotto and N. S. Papageorgiou, Positive solutions for generalized nonlinear logistic equations of superdiffusive type, Topol. Meth. Nonlin. Anal., 38 (2011), 95-113. |
[22] |
S. Kamin and L. Veron, Flat core properties associated to the $p$-Laplace operator, Proc. Amer. Math. Soc., 118 (1993), 1079-1085.
doi: 10.2307/2160060. |
[23] |
S. Kyritsi and N. S. Papageorgiou, Multiple solutions for nonlinear elliptic equations with asymmetric reaction term, Discr. Cont. Dynam. Systems, 33 (2013), 2469-2494. |
[24] |
O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. |
[25] |
S. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal., 12 (2013), 815-829.
doi: 10.3934/cpaa.2013.12.815. |
[26] |
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear boundary value problem of $p$- Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037. |
[27] |
N. S. Papageorgiou and S. Kyritsi, Handbook of Applied Analysis, Springer, New York, 2009.
doi: 10.1007/b120946. |
[28] |
N. S. Papageorgiou and G. Smyrlis, Nonlinear elliptic equations with asymptotically linear reaction term, Nonlinear Anal., 71 (2009), 3129-3151.
doi: 10.1016/j.na.2009.01.224. |
[29] |
N. S. Papageorgiou and G. Smyrlis, Positive solutions for nonlinear Neumann problems with concave and convex terms, Positivity, 16 (2012), 271-296.
doi: 10.1007/s11117-011-0124-x. |
[30] |
N. S. Papageorgiou and V. Radulescu, Bifurcation of positive solutions for nonlinear nonhomogeneous Neumann and Robin problems with competing nonlinearities, Dist. Cont. Dyn. Syst., A 35 (2015), 5003-5036. |
[31] |
V. Radulescu and D. Repovs, Combined effects in noninear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.
doi: 10.1016/j.na.2011.01.037. |
[32] |
S. Takeuchi, Positive solutions of a degenerate elliptic equation with a logistic reaction, Proc. Amer. Math. Soc., 129 (2001), 433-441.
doi: 10.1090/S0002-9939-00-05723-3. |
[33] |
S. Takeuchi, Multiplicity result for a degenerate elliptic equation with logistic reaction, J. Differential Equations, 173 (2001), 138-144.
doi: 10.1006/jdeq.2000.3914. |
[34] |
S. Takeuchi and Y. Yamada, Asymptotic properties of a reaction-diffusion equation with a degenerate $p$-Laplacian, Nonlinear Anal., 42 (2000), 41-61.
doi: 10.1016/S0362-546X(98)00329-0. |
[35] |
J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.
doi: 10.1007/BF01449041. |
show all references
References:
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Multiple positive solutions for a $p$-Laplacian Dirichlet problem with a superdiffusive reaction, Houston J. Math., 36 (2010), 313-332. |
[2] |
D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplacian operator, Comm. Partial Differential Equations, 31 (2006), 849-865.
doi: 10.1080/03605300500394447. |
[3] |
G.Barletta, R.Livrea and N. S. Papageorgiou, A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian, Comm. Pure Appl. Anal., 13 (2014), 1075-1086. |
[4] |
G.D'Agui, S.Marano and N. S. Papageorgiou, Multiple solutions to a Neumann problem with equidiffusive reaction, Disc. Cont. Dyn. Syst-Ser. S5 (2012), 765-777. |
[5] |
Y. Dong, A priori estimates and existence of positive solutions for a quasilinear elliptic equation, J. London Math. Soc., 72 (2005), 645-662.
doi: 10.1112/S0024610705006848. |
[6] |
W. Dong and J. J. Chen, Existence and multiplicity results for a degenerate elliptic equation, Acta Math. Sinica (English Series), 22 (2006), 665-670.
doi: 10.1007/s10114-005-0696-0. |
[7] |
J. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385-404.
doi: 10.1142/S0219199700000190. |
[8] |
J. Garcia Melian and J. Sabina de Lis, Stationary profiles of degenerate problems when a parameter is large, Differential Intergal Equations, 13 (2000), 1201-1232. |
[9] |
L. Gasinski and N. S.Papageorgiou, Nonlinear Analysis, Chapman Hall/CRC, Boca Raton, 2006. |
[10] |
L. Gasinski and N. S . Papageorgiou, Bifurcation type results for nonlinear parametric elliptic equations, Proc. Royal Soc. Edinburgh, 142A (2012), 595-623.
doi: 10.1017/S0308210511000126. |
[11] |
L. Gasinski and N. S. Papageorgiou, Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential, Comm. Pure Appl. Anal., 12 (2013), 1985-1999.
doi: 10.3934/cpaa.2013.12.1985. |
[12] |
L.Gasinski and N. S. Papageorgiou, A pair of positive solutions for $(p,q)$-equations with combined nonlinearities, Comm. Pure Appl. Anal., 13 (2014), 203-215. |
[13] |
L.Gasinski and N. S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Comm. Pure Appl. Anal., 13 (2014), 1491-1512. |
[14] |
M. Guedda and L. Veron, Bifurcation phenomena associated to the $p$-Laplace operator, Trans. Amer. Math. Soc., 310 (1988), 419-431.
doi: 10.2307/2001132. |
[15] |
M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.
doi: 10.1016/0362-546X(89)90020-5. |
[16] |
Z. Guo and Z. Zhang, $W^{1,p}\;$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286 (2003), 32-50.
doi: 10.1016/S0022-247X(03)00282-8. |
[17] |
M. E. Gurtin and R. C. Mac Camy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49. |
[18] |
S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$ -Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J., 62 (2010), 137-162.
doi: 10.2748/tmj/1270041030. |
[19] |
S. Hu and N. S. Papageorgiou, Double resonance for Dirichlet problems with unbounded and indefinite potential and competing nonlinearities, Comm. Pure Appl. Anal., 11 (2012), 2005-2021.
doi: 10.3934/cpaa.2012.11.2005. |
[20] |
S. Hu and N.S.Papageorgiou, Nonlinear Neumann problems with indefinite potential and concave terms, Comm. Pure Appl. Anal., 14 (2015), 2561-2616. |
[21] |
A. Iannizzotto and N. S. Papageorgiou, Positive solutions for generalized nonlinear logistic equations of superdiffusive type, Topol. Meth. Nonlin. Anal., 38 (2011), 95-113. |
[22] |
S. Kamin and L. Veron, Flat core properties associated to the $p$-Laplace operator, Proc. Amer. Math. Soc., 118 (1993), 1079-1085.
doi: 10.2307/2160060. |
[23] |
S. Kyritsi and N. S. Papageorgiou, Multiple solutions for nonlinear elliptic equations with asymmetric reaction term, Discr. Cont. Dynam. Systems, 33 (2013), 2469-2494. |
[24] |
O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. |
[25] |
S. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal., 12 (2013), 815-829.
doi: 10.3934/cpaa.2013.12.815. |
[26] |
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear boundary value problem of $p$- Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037. |
[27] |
N. S. Papageorgiou and S. Kyritsi, Handbook of Applied Analysis, Springer, New York, 2009.
doi: 10.1007/b120946. |
[28] |
N. S. Papageorgiou and G. Smyrlis, Nonlinear elliptic equations with asymptotically linear reaction term, Nonlinear Anal., 71 (2009), 3129-3151.
doi: 10.1016/j.na.2009.01.224. |
[29] |
N. S. Papageorgiou and G. Smyrlis, Positive solutions for nonlinear Neumann problems with concave and convex terms, Positivity, 16 (2012), 271-296.
doi: 10.1007/s11117-011-0124-x. |
[30] |
N. S. Papageorgiou and V. Radulescu, Bifurcation of positive solutions for nonlinear nonhomogeneous Neumann and Robin problems with competing nonlinearities, Dist. Cont. Dyn. Syst., A 35 (2015), 5003-5036. |
[31] |
V. Radulescu and D. Repovs, Combined effects in noninear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.
doi: 10.1016/j.na.2011.01.037. |
[32] |
S. Takeuchi, Positive solutions of a degenerate elliptic equation with a logistic reaction, Proc. Amer. Math. Soc., 129 (2001), 433-441.
doi: 10.1090/S0002-9939-00-05723-3. |
[33] |
S. Takeuchi, Multiplicity result for a degenerate elliptic equation with logistic reaction, J. Differential Equations, 173 (2001), 138-144.
doi: 10.1006/jdeq.2000.3914. |
[34] |
S. Takeuchi and Y. Yamada, Asymptotic properties of a reaction-diffusion equation with a degenerate $p$-Laplacian, Nonlinear Anal., 42 (2000), 41-61.
doi: 10.1016/S0362-546X(98)00329-0. |
[35] |
J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.
doi: 10.1007/BF01449041. |
[1] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003 |
[2] |
Xin-Guang Yang, Marcelo J. D. Nascimento, Maurício L. Pelicer. Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1937-1961. doi: 10.3934/dcds.2020100 |
[3] |
Alexander Krasnosel'skii, Alexei Pokrovskii. On subharmonics bifurcation in equations with homogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 747-762. doi: 10.3934/dcds.2001.7.747 |
[4] |
Michael E. Filippakis, Donal O'Regan, Nikolaos S. Papageorgiou. Positive solutions and bifurcation phenomena for nonlinear elliptic equations of logistic type: The superdiffusive case. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1507-1527. doi: 10.3934/cpaa.2010.9.1507 |
[5] |
Yanmin Niu, Xiong Li. An application of Moser's twist theorem to superlinear impulsive differential equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 431-445. doi: 10.3934/dcds.2019017 |
[6] |
Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic and Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725 |
[7] |
Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897 |
[8] |
Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010 |
[9] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[10] |
Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555 |
[11] |
Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009 |
[12] |
Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003 |
[13] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1031-1051. doi: 10.3934/cpaa.2009.8.1031 |
[14] |
Leszek Gasiński, Nikolaos S. Papageorgiou. A pair of positive solutions for $(p,q)$-equations with combined nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 203-215. doi: 10.3934/cpaa.2014.13.203 |
[15] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[16] |
A. Rodríguez-Bernal. Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1003-1032. doi: 10.3934/dcds.2009.25.1003 |
[17] |
Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95 |
[18] |
Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296 |
[19] |
Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Spiraling bifurcation diagrams in superlinear indefinite problems. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1561-1588. doi: 10.3934/dcds.2015.35.1561 |
[20] |
Kazuaki Taira. A mathematical study of diffusive logistic equations with mixed type boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021166 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]