• Previous Article
    Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems
  • CPAA Home
  • This Issue
  • Next Article
    Scattering for a nonlinear Schrödinger equation with a potential
September  2016, 15(5): 1603-1624. doi: 10.3934/cpaa.2016004

Decay of the compressible viscoelastic flows

1. 

Department of Mathematics, Guizou University, Guiyang, Guizhou Province

2. 

School of Mathematics and Statistics, Shaoguan University, Shaoguan 512005, China

3. 

Department of Mathematics, Sun Yat-sen University, Guangzhou 510275

Received  December 2014 Revised  May 2016 Published  July 2016

In this paper we study the time decay rates of the solution to the Cauchy problem for the compressible viscoelastic flows via a refined pure energy method. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained, and the $\dot{H}^{-s}(0\leq s<\frac{3}{2})$ negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.
Citation: W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004
References:
[1]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids,, \emph{SIAM J. Math. Anal.}, 33 (2001), 84.  doi: 10.1137/S0036141099359317.  Google Scholar

[2]

K. Deckelnick, Decay estimates for the compressible Navier-Stokes equations in unbounded domains,, \emph{Math. Z.}, 209 (1992), 115.  doi: 10.1007/BF02570825.  Google Scholar

[3]

K. Deckelnick, $L^{2}$-decay for the compressible Navier-Stokes equations in unbounded domains,, \emph{Commun. Partial Differ. Equ.}, 18 (1993), 1445.  doi: 10.1080/03605309308820981.  Google Scholar

[4]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal $L^p-L^q$ convergence rate for the compressible Navier-Stokes equations with potential force,, \emph{J. Differential Equations}, 238 (2007), 220.   Google Scholar

[5]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for compressible Navier-Stokes equations with potential force,, \emph{Math. Models. Methods Appl. Sci.}, 17 (2007), 737.  doi: 10.1142/S021820250700208X.  Google Scholar

[6]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, \emph{Comm. Partial Differential Equations}, 37 (2012), 2165.  doi: 10.1080/03605302.2012.696296.  Google Scholar

[7]

X. P. Hu and D. H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, \emph{J. Differential Equations}, 249 (2010), 1179.  doi: 10.1016/j.jde.2010.03.027.  Google Scholar

[8]

X. P. Hu and D. H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, \emph{J. Differential Equations}, 250 (2011), 1200.  doi: 10.1016/j.jde.2010.10.017.  Google Scholar

[9]

X. P. Hu and G. C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,, \emph{SIAM J. Math. Anal.}, 45 (2013), 2815.  doi: 10.1137/120892350.  Google Scholar

[10]

X. P. Hu and H. Wu, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows,, \emph{Discrete Contin. Dyn. Syst.}, 35 (2015), 3437.   Google Scholar

[11]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $R^{3}$,, \emph{Commun. Math. Phys.}, 200 (1999), 621.  doi: 10.1007/s002200050543.  Google Scholar

[12]

T. Kobayashi and Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations,, \emph{Pacific J. Math.}, 207 (2002), 199.  doi: 10.2140/pjm.2002.207.199.  Google Scholar

[13]

F. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, \emph{Comm. Pure Appl. Math.}, 58 (2005), 1437.  doi: 10.1002/cpa.20074.  Google Scholar

[14]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain,, \emph{Comm. Math. Sci.}, 5 (2007), 595.   Google Scholar

[15]

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows,, \emph{Chinese Ann. Math. Ser. B}, 21 (2000), 131.  doi: 10.1142/S0252959900000170.  Google Scholar

[16]

T. P. Liu and W. K. Wang, The pointwise estiamtes of diffusion waves for Navier-Stokes equations in odd multi-dimensions,, \emph{Commun. Math. Phys.}, 196 (1998), 145.  doi: 10.1007/s002200050418.  Google Scholar

[17]

L. Nirenberg, On elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115.   Google Scholar

[18]

J. Z. Qian and Z. F. Zhang, Global well-posedness for the compressible viscoelastic fluids near equilibrium,, \emph{Arch. Ration. Mech. Anal.}, 198 (2010), 835.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[19]

M. E. Schonbek, $L^{2}$ decay of weak solutions of the Navier-Stokes equations,, \emph{Arch. Ration. Mech. Anal.}, 88 (1985), 209.  doi: 10.1007/BF00752111.  Google Scholar

[20]

M. E. Schonbek, Large time behaviour of solutions of the Navier-Stokes equations,, \emph{Comm. Partial Differential Equations}, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar

[21]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).   Google Scholar

[22]

T. Zhang and D. Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework,, \emph{SIAM J. Math. Anal.}, 44 (2012), 2266.  doi: 10.1137/110851742.  Google Scholar

[23]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations,, \emph{J. Differential Equations}, 253 (2012), 273.  doi: 10.1016/j.jde.2012.03.006.  Google Scholar

[24]

Y. J. Wang and Z. Tan, Global existence and optimal decay rate for the strong solutions in $H^{2}$ to the compressible Navier-Stokes equations,, \emph{Appl. Math. Lett.}, 24 (2011), 1778.  doi: 10.1016/j.aml.2011.04.028.  Google Scholar

show all references

References:
[1]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids,, \emph{SIAM J. Math. Anal.}, 33 (2001), 84.  doi: 10.1137/S0036141099359317.  Google Scholar

[2]

K. Deckelnick, Decay estimates for the compressible Navier-Stokes equations in unbounded domains,, \emph{Math. Z.}, 209 (1992), 115.  doi: 10.1007/BF02570825.  Google Scholar

[3]

K. Deckelnick, $L^{2}$-decay for the compressible Navier-Stokes equations in unbounded domains,, \emph{Commun. Partial Differ. Equ.}, 18 (1993), 1445.  doi: 10.1080/03605309308820981.  Google Scholar

[4]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal $L^p-L^q$ convergence rate for the compressible Navier-Stokes equations with potential force,, \emph{J. Differential Equations}, 238 (2007), 220.   Google Scholar

[5]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for compressible Navier-Stokes equations with potential force,, \emph{Math. Models. Methods Appl. Sci.}, 17 (2007), 737.  doi: 10.1142/S021820250700208X.  Google Scholar

[6]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, \emph{Comm. Partial Differential Equations}, 37 (2012), 2165.  doi: 10.1080/03605302.2012.696296.  Google Scholar

[7]

X. P. Hu and D. H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, \emph{J. Differential Equations}, 249 (2010), 1179.  doi: 10.1016/j.jde.2010.03.027.  Google Scholar

[8]

X. P. Hu and D. H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, \emph{J. Differential Equations}, 250 (2011), 1200.  doi: 10.1016/j.jde.2010.10.017.  Google Scholar

[9]

X. P. Hu and G. C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,, \emph{SIAM J. Math. Anal.}, 45 (2013), 2815.  doi: 10.1137/120892350.  Google Scholar

[10]

X. P. Hu and H. Wu, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows,, \emph{Discrete Contin. Dyn. Syst.}, 35 (2015), 3437.   Google Scholar

[11]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $R^{3}$,, \emph{Commun. Math. Phys.}, 200 (1999), 621.  doi: 10.1007/s002200050543.  Google Scholar

[12]

T. Kobayashi and Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations,, \emph{Pacific J. Math.}, 207 (2002), 199.  doi: 10.2140/pjm.2002.207.199.  Google Scholar

[13]

F. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, \emph{Comm. Pure Appl. Math.}, 58 (2005), 1437.  doi: 10.1002/cpa.20074.  Google Scholar

[14]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain,, \emph{Comm. Math. Sci.}, 5 (2007), 595.   Google Scholar

[15]

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows,, \emph{Chinese Ann. Math. Ser. B}, 21 (2000), 131.  doi: 10.1142/S0252959900000170.  Google Scholar

[16]

T. P. Liu and W. K. Wang, The pointwise estiamtes of diffusion waves for Navier-Stokes equations in odd multi-dimensions,, \emph{Commun. Math. Phys.}, 196 (1998), 145.  doi: 10.1007/s002200050418.  Google Scholar

[17]

L. Nirenberg, On elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115.   Google Scholar

[18]

J. Z. Qian and Z. F. Zhang, Global well-posedness for the compressible viscoelastic fluids near equilibrium,, \emph{Arch. Ration. Mech. Anal.}, 198 (2010), 835.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[19]

M. E. Schonbek, $L^{2}$ decay of weak solutions of the Navier-Stokes equations,, \emph{Arch. Ration. Mech. Anal.}, 88 (1985), 209.  doi: 10.1007/BF00752111.  Google Scholar

[20]

M. E. Schonbek, Large time behaviour of solutions of the Navier-Stokes equations,, \emph{Comm. Partial Differential Equations}, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar

[21]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).   Google Scholar

[22]

T. Zhang and D. Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework,, \emph{SIAM J. Math. Anal.}, 44 (2012), 2266.  doi: 10.1137/110851742.  Google Scholar

[23]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations,, \emph{J. Differential Equations}, 253 (2012), 273.  doi: 10.1016/j.jde.2012.03.006.  Google Scholar

[24]

Y. J. Wang and Z. Tan, Global existence and optimal decay rate for the strong solutions in $H^{2}$ to the compressible Navier-Stokes equations,, \emph{Appl. Math. Lett.}, 24 (2011), 1778.  doi: 10.1016/j.aml.2011.04.028.  Google Scholar

[1]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[2]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[3]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[4]

Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems & Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43

[5]

Rowan Killip, Satoshi Masaki, Jason Murphy, Monica Visan. The radial mass-subcritical NLS in negative order Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 553-583. doi: 10.3934/dcds.2019023

[6]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. On a system of semirelativistic equations in the energy space. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1343-1355. doi: 10.3934/cpaa.2015.14.1343

[7]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473

[8]

Martins Bruveris. Completeness properties of Sobolev metrics on the space of curves. Journal of Geometric Mechanics, 2015, 7 (2) : 125-150. doi: 10.3934/jgm.2015.7.125

[9]

Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096

[10]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[11]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[12]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[13]

Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure & Applied Analysis, 2004, 3 (2) : 301-318. doi: 10.3934/cpaa.2004.3.301

[14]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[15]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[16]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[17]

M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215

[18]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365

[19]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[20]

Herbert Gajewski, Jens A. Griepentrog. A descent method for the free energy of multicomponent systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 505-528. doi: 10.3934/dcds.2006.15.505

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]