\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems

Abstract Related Papers Cited by
  • This paper considers the Hamiltonian systems with new generalized super-quadratic conditions. Using the variational principle and critical point theory, we obtain infinitely many distinct subharmonic solutions and an unbounded sequence of periodic solutions.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Q. An and Z. Q. Wang, Periodic solutions of Hamiltonian systems with anisotropic growth, Comm. Pure Appl. Ana., 9 (2010), 1069-1082.doi: 10.3934/cpaa.2010.9.1069.

    [2]

    S. L. Chen and C. H. Tang, Periodic and subharmonic solutions of a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 297 (2004), 267-284.doi: 10.1016/j.jmaa.2004.05.006.

    [3]

    G. H. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electro. J. Differential Equations, 8 (2002), 1-12.

    [4]

    P. L. Felmer, Periodic solutions of "superquadratic'' Hamiltonian systems, J. Differential Equations, 102 (1993), 188-207.doi: 10.1006/jdeq.1993.1027.

    [5]

    P. L. Felmer and Z. Q. Wang, Multiplicity for symmetric indefinite functionals: applications to Hamiltonian systems and elliptic systems, Topol. Methods Nonlinear Anal., 12 (1998), 207-226.

    [6]

    C. Li and C. G. Liu, Brake subharmonic solutions of first order Hamiltonian systems, Sci. China Math., 53 (2010), 2719-2732.doi: 10.1007/s11425-010-4105-5.

    [7]

    C. G. Liu, Subharmonic solutions of Hamiltonian systems, Nonlinear Anal., 42 (2000), 185-198.doi: 10.1016/S0362-546X(98)00339-3.

    [8]

    Y. Long, Periodic solutions of perturbed super-quadratic Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa. Serie IV. Vol. XVII. Fasc., 1 (1990), 35-77.

    [9]

    Y. Long, Periodic solutions of Hamiltonian systems with bounded forcing terms, Math. Z., 203 (1990), 453-467.doi: 10.1007/BF02570749.

    [10]

    J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-2061-7.

    [11]

    P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.

    [12]

    P. H. Rabinowitz, On subhamonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 33 (1980), 609-633.doi: 10.1002/cpa.3160330504.

    [13]

    P. H. Rabinowitz, Periodic solutions of large norm of Hamiltonian systems, J. Differential Equations, 50 (1986), 33-48.doi: 10.1016/0022-0396(83)90083-9.

    [14]

    P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, American Mathematical Society, Providence, 1986.doi: 10.1090/cbms/065.

    [15]

    C. H. Tang, Existence and multiplicity of periodic solutions for nonautonomous second order systems, Nonlinear Anal., 32 (1998), 299-304.doi: 10.1016/S0362-546X(97)00493-8.

    [16]

    X. J. Xu, Periodic solutions for non-autonomous Hamiltonian systems possessing super-quardratic potentials, Nonlinear Anal., 51 (2002), 941-955.doi: 10.1016/S0362-546X(01)00870-7.

    [17]

    Q. Y. Zhang and C. G. Liu, Infinitely many periodic solutions for second order Hamiltonian systems, J. Differential Equations, 251 (2011), 816-833.doi: 10.1016/j.jde.2011.05.021.

    [18]

    X. F. Zhang and F. Guo, Existence of periodic solutions of a particular type of super-quadratic Hamiltonian systems, J. Math. Anal. Appl., 421 (2015), 1587-1602.doi: 10.1016/j.jmaa.2014.08.006.

    [19]

    W. Zou and S. Li, Infinitely many solutions for Hamiltonian systems, J. Differential Equations, 186 (2002), 141-164.doi: 10.1016/S0022-0396(02)00005-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(177) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return