September  2016, 15(5): 1625-1642. doi: 10.3934/cpaa.2016005

Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems

1. 

Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, China, China

Received  March 2015 Revised  August 2015 Published  July 2016

This paper considers the Hamiltonian systems with new generalized super-quadratic conditions. Using the variational principle and critical point theory, we obtain infinitely many distinct subharmonic solutions and an unbounded sequence of periodic solutions.
Citation: Xiao-Fei Zhang, Fei Guo. Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1625-1642. doi: 10.3934/cpaa.2016005
References:
[1]

T. Q. An and Z. Q. Wang, Periodic solutions of Hamiltonian systems with anisotropic growth,, \emph{Comm. Pure Appl. Ana.}, 9 (2010), 1069.  doi: 10.3934/cpaa.2010.9.1069.  Google Scholar

[2]

S. L. Chen and C. H. Tang, Periodic and subharmonic solutions of a class of superquadratic Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 297 (2004), 267.  doi: 10.1016/j.jmaa.2004.05.006.  Google Scholar

[3]

G. H. Fei, On periodic solutions of superquadratic Hamiltonian systems,, \emph{Electro. J. Differential Equations}, 8 (2002), 1.   Google Scholar

[4]

P. L. Felmer, Periodic solutions of "superquadratic'' Hamiltonian systems,, \emph{J. Differential Equations}, 102 (1993), 188.  doi: 10.1006/jdeq.1993.1027.  Google Scholar

[5]

P. L. Felmer and Z. Q. Wang, Multiplicity for symmetric indefinite functionals: applications to Hamiltonian systems and elliptic systems,, \emph{Topol. Methods Nonlinear Anal.}, 12 (1998), 207.   Google Scholar

[6]

C. Li and C. G. Liu, Brake subharmonic solutions of first order Hamiltonian systems,, \emph{Sci. China Math.}, 53 (2010), 2719.  doi: 10.1007/s11425-010-4105-5.  Google Scholar

[7]

C. G. Liu, Subharmonic solutions of Hamiltonian systems,, \emph{Nonlinear Anal.}, 42 (2000), 185.  doi: 10.1016/S0362-546X(98)00339-3.  Google Scholar

[8]

Y. Long, Periodic solutions of perturbed super-quadratic Hamiltonian systems,, \emph{Ann. Scuola Norm. Sup. Pisa. Serie IV. Vol. XVII. Fasc.}, 1 (1990), 35.   Google Scholar

[9]

Y. Long, Periodic solutions of Hamiltonian systems with bounded forcing terms,, \emph{Math. Z.}, 203 (1990), 453.  doi: 10.1007/BF02570749.  Google Scholar

[10]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[11]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, \emph{Comm. Pure Appl. Math.}, 31 (1978), 157.   Google Scholar

[12]

P. H. Rabinowitz, On subhamonic solutions of Hamiltonian systems,, \emph{Comm. Pure Appl. Math.}, 33 (1980), 609.  doi: 10.1002/cpa.3160330504.  Google Scholar

[13]

P. H. Rabinowitz, Periodic solutions of large norm of Hamiltonian systems,, \emph{J. Differential Equations}, 50 (1986), 33.  doi: 10.1016/0022-0396(83)90083-9.  Google Scholar

[14]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Reg. Conf. Ser. Math. 65, (1986).  doi: 10.1090/cbms/065.  Google Scholar

[15]

C. H. Tang, Existence and multiplicity of periodic solutions for nonautonomous second order systems,, \emph{Nonlinear Anal.}, 32 (1998), 299.  doi: 10.1016/S0362-546X(97)00493-8.  Google Scholar

[16]

X. J. Xu, Periodic solutions for non-autonomous Hamiltonian systems possessing super-quardratic potentials,, \emph{Nonlinear Anal.}, 51 (2002), 941.  doi: 10.1016/S0362-546X(01)00870-7.  Google Scholar

[17]

Q. Y. Zhang and C. G. Liu, Infinitely many periodic solutions for second order Hamiltonian systems,, \emph{J. Differential Equations}, 251 (2011), 816.  doi: 10.1016/j.jde.2011.05.021.  Google Scholar

[18]

X. F. Zhang and F. Guo, Existence of periodic solutions of a particular type of super-quadratic Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 421 (2015), 1587.  doi: 10.1016/j.jmaa.2014.08.006.  Google Scholar

[19]

W. Zou and S. Li, Infinitely many solutions for Hamiltonian systems,, \emph{J. Differential Equations}, 186 (2002), 141.  doi: 10.1016/S0022-0396(02)00005-0.  Google Scholar

show all references

References:
[1]

T. Q. An and Z. Q. Wang, Periodic solutions of Hamiltonian systems with anisotropic growth,, \emph{Comm. Pure Appl. Ana.}, 9 (2010), 1069.  doi: 10.3934/cpaa.2010.9.1069.  Google Scholar

[2]

S. L. Chen and C. H. Tang, Periodic and subharmonic solutions of a class of superquadratic Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 297 (2004), 267.  doi: 10.1016/j.jmaa.2004.05.006.  Google Scholar

[3]

G. H. Fei, On periodic solutions of superquadratic Hamiltonian systems,, \emph{Electro. J. Differential Equations}, 8 (2002), 1.   Google Scholar

[4]

P. L. Felmer, Periodic solutions of "superquadratic'' Hamiltonian systems,, \emph{J. Differential Equations}, 102 (1993), 188.  doi: 10.1006/jdeq.1993.1027.  Google Scholar

[5]

P. L. Felmer and Z. Q. Wang, Multiplicity for symmetric indefinite functionals: applications to Hamiltonian systems and elliptic systems,, \emph{Topol. Methods Nonlinear Anal.}, 12 (1998), 207.   Google Scholar

[6]

C. Li and C. G. Liu, Brake subharmonic solutions of first order Hamiltonian systems,, \emph{Sci. China Math.}, 53 (2010), 2719.  doi: 10.1007/s11425-010-4105-5.  Google Scholar

[7]

C. G. Liu, Subharmonic solutions of Hamiltonian systems,, \emph{Nonlinear Anal.}, 42 (2000), 185.  doi: 10.1016/S0362-546X(98)00339-3.  Google Scholar

[8]

Y. Long, Periodic solutions of perturbed super-quadratic Hamiltonian systems,, \emph{Ann. Scuola Norm. Sup. Pisa. Serie IV. Vol. XVII. Fasc.}, 1 (1990), 35.   Google Scholar

[9]

Y. Long, Periodic solutions of Hamiltonian systems with bounded forcing terms,, \emph{Math. Z.}, 203 (1990), 453.  doi: 10.1007/BF02570749.  Google Scholar

[10]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[11]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, \emph{Comm. Pure Appl. Math.}, 31 (1978), 157.   Google Scholar

[12]

P. H. Rabinowitz, On subhamonic solutions of Hamiltonian systems,, \emph{Comm. Pure Appl. Math.}, 33 (1980), 609.  doi: 10.1002/cpa.3160330504.  Google Scholar

[13]

P. H. Rabinowitz, Periodic solutions of large norm of Hamiltonian systems,, \emph{J. Differential Equations}, 50 (1986), 33.  doi: 10.1016/0022-0396(83)90083-9.  Google Scholar

[14]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Reg. Conf. Ser. Math. 65, (1986).  doi: 10.1090/cbms/065.  Google Scholar

[15]

C. H. Tang, Existence and multiplicity of periodic solutions for nonautonomous second order systems,, \emph{Nonlinear Anal.}, 32 (1998), 299.  doi: 10.1016/S0362-546X(97)00493-8.  Google Scholar

[16]

X. J. Xu, Periodic solutions for non-autonomous Hamiltonian systems possessing super-quardratic potentials,, \emph{Nonlinear Anal.}, 51 (2002), 941.  doi: 10.1016/S0362-546X(01)00870-7.  Google Scholar

[17]

Q. Y. Zhang and C. G. Liu, Infinitely many periodic solutions for second order Hamiltonian systems,, \emph{J. Differential Equations}, 251 (2011), 816.  doi: 10.1016/j.jde.2011.05.021.  Google Scholar

[18]

X. F. Zhang and F. Guo, Existence of periodic solutions of a particular type of super-quadratic Hamiltonian systems,, \emph{J. Math. Anal. Appl.}, 421 (2015), 1587.  doi: 10.1016/j.jmaa.2014.08.006.  Google Scholar

[19]

W. Zou and S. Li, Infinitely many solutions for Hamiltonian systems,, \emph{J. Differential Equations}, 186 (2002), 141.  doi: 10.1016/S0022-0396(02)00005-0.  Google Scholar

[1]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[4]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[7]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[10]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[17]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]