September  2016, 15(5): 1841-1856. doi: 10.3934/cpaa.2016006

Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China, China

Received  August 2015 Revised  April 2016 Published  July 2016

In this article, we study the existence and multiplicity of positive solutions for the Kirchhoff type problem with singular and critical nonlinearities \begin{eqnarray} \begin{cases} -\left(a+b\displaystyle\int_\Omega|\nabla u|^2dx\right)\Delta u=\mu u^{3}+\frac{\lambda}{|x|^{\beta}u^{\gamma}}, &\rm \mathrm{in}\ \ \Omega, \\ u>0, &\rm \mathrm{in}\ \ \Omega, \\ u=0, &\rm \mathrm{on}\ \ \partial\Omega, \end{cases} \end{eqnarray} where $\Omega\subset \mathbb{R}^{4}$ is a bounded smooth domain and $a, b>0$, $\lambda>0$. For all $\mu>0$ and $\gamma\in(0,1)$, $0\leq\beta < 3$, we obtain one positive solution. Particularly, we prove that this problem has at least two positive solutions for all $\mu> bS^{2}$ and $\gamma\in(0,\frac{1}{2})$, $2+2\gamma < \beta < 3$.
Citation: Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006
References:
[1]

C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth,, \emph{Differ. Equ. Appl.}, 23 (2010), 409. doi: 10.7153/dea-02-25. Google Scholar

[2]

C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, \emph{Comput. Math. Appl.}, 49 (2005), 85. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Funct. Anal.}, 14 (1973), 349. Google Scholar

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437. doi: 10.1002/cpa.3160360405. Google Scholar

[5]

B. T. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems,, \emph{J. Math. Annal. Appl.}, 394 (2012), 488. doi: 10.1016/j.jmaa.2012.04.025. Google Scholar

[6]

B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems,, \emph{Nonlinear Anal.}, 71 (2009), 4883. doi: 10.1016/j.na.2009.03.065. Google Scholar

[7]

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument,, \emph{J. Math. Anal. Appl.}, 401 (2013), 706. doi: 10.1016/j.jmaa.2012.12.053. Google Scholar

[8]

A. Hamydy, M. Massar and N. Tsouli, Existence of solution for $p$-Kirchhoff type problems with critical exponents,, \emph{Electronic J. Differential Equations}, 105 (2011), 1. Google Scholar

[9]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbbR^N$,, \emph{J. Math. Annal. Appl.}, 369 (2010), 564. doi: 10.1016/j.jmaa.2010.03.059. Google Scholar

[10]

G. Kirchhoff, Mechanik,, Teubner, (1883). Google Scholar

[11]

C. Y. Lei, J. F. Liao and C. L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents,, \emph{J. Math. Anal. Appl.}, 421 (2015), 521. doi: 10.1016/j.jmaa.2014.07.031. Google Scholar

[12]

J. Liu, J. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 429 (2015), 1153. doi: 10.1016/j.jmaa.2015.04.066. Google Scholar

[13]

J. F. Liao, P. Zhang, J. Liu and C. L. Tang, Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity,, \emph{J. Math. Anal. Appl.}, 430 (2015), 1124. doi: 10.1016/j.jmaa.2015.05.038. Google Scholar

[14]

J. L. Lions, On some questions in boundary value problems of mathematical physics,, in \emph{Contemporary Developments in Continuum Mechanics and Partial Differential Equations}, (1997), 284. Google Scholar

[15]

S. H. Liang and S. Y. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbbR^N$,, \emph{Nonlinear Anal.}, 81 (2013), 31. doi: 10.1016/j.na.2012.12.003. Google Scholar

[16]

S. H. Liang and J. H. Zhang, Existence of solutions for Kirchhoff type problems with critical growth in $\mathbbR^3$,, \emph{Nonlinear Anal. Real World Appl.}, 17 (2014), 126. doi: 10.1016/j.nonrwa.2013.10.011. Google Scholar

[17]

X. Liu and Y. J. Sun, Multiple positive solutions for Kirchhoff type problems with singularity,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 721. Google Scholar

[18]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions,, \emph{J. Differential Equations}, 253 (2012), 2285. doi: 10.1016/j.jde.2012.05.017. Google Scholar

[19]

A. M. Mao and S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems,, \emph{J. Math. Anal. Appl.}, 383 (2011), 239. doi: 10.1016/j.jmaa.2011.05.021. Google Scholar

[20]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, \emph{Nonlinear Anal.}, 70 (2009), 1275. doi: 10.1016/j.na.2008.02.011. Google Scholar

[21]

T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, \emph{Appl. Math. Lett.}, 16 (2003), 243. doi: 10.1016/S0893-9659(03)80038-1. Google Scholar

[22]

D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four,, \emph{J. Differential Equations}, 257 (2014), 1168. doi: 10.1016/j.jde.2014.05.002. Google Scholar

[23]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Anal.}, 75 (2012), 3470. doi: 10.1016/j.na.2012.01.004. Google Scholar

[24]

J. J. Sun and C. L. Tang, Existence and multipicity of solutions for Kirchhoff type equations,, \emph{Nonlinear Anal.}, 74 (2011), 1212. doi: 10.1016/j.na.2010.09.061. Google Scholar

[25]

G. Talenti, Best constant in Sobolev inequality,, \emph{Ann. Mat. Pura Appl.}, 110 (1976), 353. Google Scholar

[26]

L. Wei and X. M. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, \emph{J. Appl. Math. Comput.}, 39 (2012), 473. doi: 10.1007/s12190-012-0536-1. Google Scholar

[27]

Q. L. Xie, X. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 2773. doi: 10.3934/cpaa.2013.12.2773. Google Scholar

[28]

Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems,, \emph{Nonlinear Anal.}, 73 (2010), 25. doi: 10.1016/j.na.2010.02.008. Google Scholar

[29]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, \emph{J. Math. Anal. Appl.}, 317 (2006), 456. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

show all references

References:
[1]

C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth,, \emph{Differ. Equ. Appl.}, 23 (2010), 409. doi: 10.7153/dea-02-25. Google Scholar

[2]

C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, \emph{Comput. Math. Appl.}, 49 (2005), 85. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Funct. Anal.}, 14 (1973), 349. Google Scholar

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437. doi: 10.1002/cpa.3160360405. Google Scholar

[5]

B. T. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems,, \emph{J. Math. Annal. Appl.}, 394 (2012), 488. doi: 10.1016/j.jmaa.2012.04.025. Google Scholar

[6]

B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems,, \emph{Nonlinear Anal.}, 71 (2009), 4883. doi: 10.1016/j.na.2009.03.065. Google Scholar

[7]

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument,, \emph{J. Math. Anal. Appl.}, 401 (2013), 706. doi: 10.1016/j.jmaa.2012.12.053. Google Scholar

[8]

A. Hamydy, M. Massar and N. Tsouli, Existence of solution for $p$-Kirchhoff type problems with critical exponents,, \emph{Electronic J. Differential Equations}, 105 (2011), 1. Google Scholar

[9]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbbR^N$,, \emph{J. Math. Annal. Appl.}, 369 (2010), 564. doi: 10.1016/j.jmaa.2010.03.059. Google Scholar

[10]

G. Kirchhoff, Mechanik,, Teubner, (1883). Google Scholar

[11]

C. Y. Lei, J. F. Liao and C. L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents,, \emph{J. Math. Anal. Appl.}, 421 (2015), 521. doi: 10.1016/j.jmaa.2014.07.031. Google Scholar

[12]

J. Liu, J. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 429 (2015), 1153. doi: 10.1016/j.jmaa.2015.04.066. Google Scholar

[13]

J. F. Liao, P. Zhang, J. Liu and C. L. Tang, Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity,, \emph{J. Math. Anal. Appl.}, 430 (2015), 1124. doi: 10.1016/j.jmaa.2015.05.038. Google Scholar

[14]

J. L. Lions, On some questions in boundary value problems of mathematical physics,, in \emph{Contemporary Developments in Continuum Mechanics and Partial Differential Equations}, (1997), 284. Google Scholar

[15]

S. H. Liang and S. Y. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbbR^N$,, \emph{Nonlinear Anal.}, 81 (2013), 31. doi: 10.1016/j.na.2012.12.003. Google Scholar

[16]

S. H. Liang and J. H. Zhang, Existence of solutions for Kirchhoff type problems with critical growth in $\mathbbR^3$,, \emph{Nonlinear Anal. Real World Appl.}, 17 (2014), 126. doi: 10.1016/j.nonrwa.2013.10.011. Google Scholar

[17]

X. Liu and Y. J. Sun, Multiple positive solutions for Kirchhoff type problems with singularity,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 721. Google Scholar

[18]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions,, \emph{J. Differential Equations}, 253 (2012), 2285. doi: 10.1016/j.jde.2012.05.017. Google Scholar

[19]

A. M. Mao and S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems,, \emph{J. Math. Anal. Appl.}, 383 (2011), 239. doi: 10.1016/j.jmaa.2011.05.021. Google Scholar

[20]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, \emph{Nonlinear Anal.}, 70 (2009), 1275. doi: 10.1016/j.na.2008.02.011. Google Scholar

[21]

T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, \emph{Appl. Math. Lett.}, 16 (2003), 243. doi: 10.1016/S0893-9659(03)80038-1. Google Scholar

[22]

D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four,, \emph{J. Differential Equations}, 257 (2014), 1168. doi: 10.1016/j.jde.2014.05.002. Google Scholar

[23]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Anal.}, 75 (2012), 3470. doi: 10.1016/j.na.2012.01.004. Google Scholar

[24]

J. J. Sun and C. L. Tang, Existence and multipicity of solutions for Kirchhoff type equations,, \emph{Nonlinear Anal.}, 74 (2011), 1212. doi: 10.1016/j.na.2010.09.061. Google Scholar

[25]

G. Talenti, Best constant in Sobolev inequality,, \emph{Ann. Mat. Pura Appl.}, 110 (1976), 353. Google Scholar

[26]

L. Wei and X. M. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, \emph{J. Appl. Math. Comput.}, 39 (2012), 473. doi: 10.1007/s12190-012-0536-1. Google Scholar

[27]

Q. L. Xie, X. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 2773. doi: 10.3934/cpaa.2013.12.2773. Google Scholar

[28]

Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems,, \emph{Nonlinear Anal.}, 73 (2010), 25. doi: 10.1016/j.na.2010.02.008. Google Scholar

[29]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, \emph{J. Math. Anal. Appl.}, 317 (2006), 456. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

[1]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[2]

Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721

[3]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[4]

Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008

[5]

Jiu Liu, Jia-Feng Liao, Chun-Lei Tang. Positive solution for the Kirchhoff-type equations involving general subcritical growth. Communications on Pure & Applied Analysis, 2016, 15 (2) : 445-455. doi: 10.3934/cpaa.2016.15.445

[6]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[7]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[8]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[9]

Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289

[10]

Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971

[11]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[12]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[13]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[14]

Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009

[15]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[16]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[17]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[18]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[19]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[20]

Ling Ding, Shu-Ming Sun. Existence of positive solutions for a class of Kirchhoff type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1663-1685. doi: 10.3934/dcdss.2016069

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

[Back to Top]