September  2016, 15(5): 1841-1856. doi: 10.3934/cpaa.2016006

Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China, China

Received  August 2015 Revised  April 2016 Published  July 2016

In this article, we study the existence and multiplicity of positive solutions for the Kirchhoff type problem with singular and critical nonlinearities \begin{eqnarray} \begin{cases} -\left(a+b\displaystyle\int_\Omega|\nabla u|^2dx\right)\Delta u=\mu u^{3}+\frac{\lambda}{|x|^{\beta}u^{\gamma}}, &\rm \mathrm{in}\ \ \Omega, \\ u>0, &\rm \mathrm{in}\ \ \Omega, \\ u=0, &\rm \mathrm{on}\ \ \partial\Omega, \end{cases} \end{eqnarray} where $\Omega\subset \mathbb{R}^{4}$ is a bounded smooth domain and $a, b>0$, $\lambda>0$. For all $\mu>0$ and $\gamma\in(0,1)$, $0\leq\beta < 3$, we obtain one positive solution. Particularly, we prove that this problem has at least two positive solutions for all $\mu> bS^{2}$ and $\gamma\in(0,\frac{1}{2})$, $2+2\gamma < \beta < 3$.
Citation: Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006
References:
[1]

C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth,, \emph{Differ. Equ. Appl.}, 23 (2010), 409.  doi: 10.7153/dea-02-25.  Google Scholar

[2]

C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, \emph{Comput. Math. Appl.}, 49 (2005), 85.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Funct. Anal.}, 14 (1973), 349.   Google Scholar

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

B. T. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems,, \emph{J. Math. Annal. Appl.}, 394 (2012), 488.  doi: 10.1016/j.jmaa.2012.04.025.  Google Scholar

[6]

B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems,, \emph{Nonlinear Anal.}, 71 (2009), 4883.  doi: 10.1016/j.na.2009.03.065.  Google Scholar

[7]

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument,, \emph{J. Math. Anal. Appl.}, 401 (2013), 706.  doi: 10.1016/j.jmaa.2012.12.053.  Google Scholar

[8]

A. Hamydy, M. Massar and N. Tsouli, Existence of solution for $p$-Kirchhoff type problems with critical exponents,, \emph{Electronic J. Differential Equations}, 105 (2011), 1.   Google Scholar

[9]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbbR^N$,, \emph{J. Math. Annal. Appl.}, 369 (2010), 564.  doi: 10.1016/j.jmaa.2010.03.059.  Google Scholar

[10]

G. Kirchhoff, Mechanik,, Teubner, (1883).   Google Scholar

[11]

C. Y. Lei, J. F. Liao and C. L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents,, \emph{J. Math. Anal. Appl.}, 421 (2015), 521.  doi: 10.1016/j.jmaa.2014.07.031.  Google Scholar

[12]

J. Liu, J. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 429 (2015), 1153.  doi: 10.1016/j.jmaa.2015.04.066.  Google Scholar

[13]

J. F. Liao, P. Zhang, J. Liu and C. L. Tang, Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity,, \emph{J. Math. Anal. Appl.}, 430 (2015), 1124.  doi: 10.1016/j.jmaa.2015.05.038.  Google Scholar

[14]

J. L. Lions, On some questions in boundary value problems of mathematical physics,, in \emph{Contemporary Developments in Continuum Mechanics and Partial Differential Equations}, (1997), 284.   Google Scholar

[15]

S. H. Liang and S. Y. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbbR^N$,, \emph{Nonlinear Anal.}, 81 (2013), 31.  doi: 10.1016/j.na.2012.12.003.  Google Scholar

[16]

S. H. Liang and J. H. Zhang, Existence of solutions for Kirchhoff type problems with critical growth in $\mathbbR^3$,, \emph{Nonlinear Anal. Real World Appl.}, 17 (2014), 126.  doi: 10.1016/j.nonrwa.2013.10.011.  Google Scholar

[17]

X. Liu and Y. J. Sun, Multiple positive solutions for Kirchhoff type problems with singularity,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 721.   Google Scholar

[18]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions,, \emph{J. Differential Equations}, 253 (2012), 2285.  doi: 10.1016/j.jde.2012.05.017.  Google Scholar

[19]

A. M. Mao and S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems,, \emph{J. Math. Anal. Appl.}, 383 (2011), 239.  doi: 10.1016/j.jmaa.2011.05.021.  Google Scholar

[20]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, \emph{Nonlinear Anal.}, 70 (2009), 1275.  doi: 10.1016/j.na.2008.02.011.  Google Scholar

[21]

T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, \emph{Appl. Math. Lett.}, 16 (2003), 243.  doi: 10.1016/S0893-9659(03)80038-1.  Google Scholar

[22]

D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four,, \emph{J. Differential Equations}, 257 (2014), 1168.  doi: 10.1016/j.jde.2014.05.002.  Google Scholar

[23]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Anal.}, 75 (2012), 3470.  doi: 10.1016/j.na.2012.01.004.  Google Scholar

[24]

J. J. Sun and C. L. Tang, Existence and multipicity of solutions for Kirchhoff type equations,, \emph{Nonlinear Anal.}, 74 (2011), 1212.  doi: 10.1016/j.na.2010.09.061.  Google Scholar

[25]

G. Talenti, Best constant in Sobolev inequality,, \emph{Ann. Mat. Pura Appl.}, 110 (1976), 353.   Google Scholar

[26]

L. Wei and X. M. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, \emph{J. Appl. Math. Comput.}, 39 (2012), 473.  doi: 10.1007/s12190-012-0536-1.  Google Scholar

[27]

Q. L. Xie, X. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 2773.  doi: 10.3934/cpaa.2013.12.2773.  Google Scholar

[28]

Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems,, \emph{Nonlinear Anal.}, 73 (2010), 25.  doi: 10.1016/j.na.2010.02.008.  Google Scholar

[29]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, \emph{J. Math. Anal. Appl.}, 317 (2006), 456.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

show all references

References:
[1]

C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth,, \emph{Differ. Equ. Appl.}, 23 (2010), 409.  doi: 10.7153/dea-02-25.  Google Scholar

[2]

C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, \emph{Comput. Math. Appl.}, 49 (2005), 85.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Funct. Anal.}, 14 (1973), 349.   Google Scholar

[4]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

B. T. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems,, \emph{J. Math. Annal. Appl.}, 394 (2012), 488.  doi: 10.1016/j.jmaa.2012.04.025.  Google Scholar

[6]

B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems,, \emph{Nonlinear Anal.}, 71 (2009), 4883.  doi: 10.1016/j.na.2009.03.065.  Google Scholar

[7]

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument,, \emph{J. Math. Anal. Appl.}, 401 (2013), 706.  doi: 10.1016/j.jmaa.2012.12.053.  Google Scholar

[8]

A. Hamydy, M. Massar and N. Tsouli, Existence of solution for $p$-Kirchhoff type problems with critical exponents,, \emph{Electronic J. Differential Equations}, 105 (2011), 1.   Google Scholar

[9]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbbR^N$,, \emph{J. Math. Annal. Appl.}, 369 (2010), 564.  doi: 10.1016/j.jmaa.2010.03.059.  Google Scholar

[10]

G. Kirchhoff, Mechanik,, Teubner, (1883).   Google Scholar

[11]

C. Y. Lei, J. F. Liao and C. L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents,, \emph{J. Math. Anal. Appl.}, 421 (2015), 521.  doi: 10.1016/j.jmaa.2014.07.031.  Google Scholar

[12]

J. Liu, J. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 429 (2015), 1153.  doi: 10.1016/j.jmaa.2015.04.066.  Google Scholar

[13]

J. F. Liao, P. Zhang, J. Liu and C. L. Tang, Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity,, \emph{J. Math. Anal. Appl.}, 430 (2015), 1124.  doi: 10.1016/j.jmaa.2015.05.038.  Google Scholar

[14]

J. L. Lions, On some questions in boundary value problems of mathematical physics,, in \emph{Contemporary Developments in Continuum Mechanics and Partial Differential Equations}, (1997), 284.   Google Scholar

[15]

S. H. Liang and S. Y. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbbR^N$,, \emph{Nonlinear Anal.}, 81 (2013), 31.  doi: 10.1016/j.na.2012.12.003.  Google Scholar

[16]

S. H. Liang and J. H. Zhang, Existence of solutions for Kirchhoff type problems with critical growth in $\mathbbR^3$,, \emph{Nonlinear Anal. Real World Appl.}, 17 (2014), 126.  doi: 10.1016/j.nonrwa.2013.10.011.  Google Scholar

[17]

X. Liu and Y. J. Sun, Multiple positive solutions for Kirchhoff type problems with singularity,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 721.   Google Scholar

[18]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions,, \emph{J. Differential Equations}, 253 (2012), 2285.  doi: 10.1016/j.jde.2012.05.017.  Google Scholar

[19]

A. M. Mao and S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems,, \emph{J. Math. Anal. Appl.}, 383 (2011), 239.  doi: 10.1016/j.jmaa.2011.05.021.  Google Scholar

[20]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, \emph{Nonlinear Anal.}, 70 (2009), 1275.  doi: 10.1016/j.na.2008.02.011.  Google Scholar

[21]

T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, \emph{Appl. Math. Lett.}, 16 (2003), 243.  doi: 10.1016/S0893-9659(03)80038-1.  Google Scholar

[22]

D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four,, \emph{J. Differential Equations}, 257 (2014), 1168.  doi: 10.1016/j.jde.2014.05.002.  Google Scholar

[23]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Anal.}, 75 (2012), 3470.  doi: 10.1016/j.na.2012.01.004.  Google Scholar

[24]

J. J. Sun and C. L. Tang, Existence and multipicity of solutions for Kirchhoff type equations,, \emph{Nonlinear Anal.}, 74 (2011), 1212.  doi: 10.1016/j.na.2010.09.061.  Google Scholar

[25]

G. Talenti, Best constant in Sobolev inequality,, \emph{Ann. Mat. Pura Appl.}, 110 (1976), 353.   Google Scholar

[26]

L. Wei and X. M. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, \emph{J. Appl. Math. Comput.}, 39 (2012), 473.  doi: 10.1007/s12190-012-0536-1.  Google Scholar

[27]

Q. L. Xie, X. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 2773.  doi: 10.3934/cpaa.2013.12.2773.  Google Scholar

[28]

Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems,, \emph{Nonlinear Anal.}, 73 (2010), 25.  doi: 10.1016/j.na.2010.02.008.  Google Scholar

[29]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, \emph{J. Math. Anal. Appl.}, 317 (2006), 456.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (11)

[Back to Top]