\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability for the compressible nematic liquid crystal flow with large initial data

Abstract Related Papers Cited by
  • In this paper, we consider the asymptotic behavior of the global spherically or cylindrically symmetric solution for the compressible nematic liquid crystal flow in multi-dimension with large initial data. Using the uniform point-wise positive lower and upper bounds of the density, we obtain the exponential stability of the global strong solution.
    Mathematics Subject Classification: Primary: 35B40, 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fuids, Math. Meth. Appl. Sci., 28 (2005), 1-28.doi: 10.1002/mma.545.

    [2]

    P. G. de Gennes, The Physics of Liquid Crystals, Oxford, 1974.

    [3]

    S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.doi: 10.3934/dcds.2012.32.539.

    [4]

    S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.doi: 10.3934/dcdsb.2011.15.357.

    [5]

    J. L. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.

    [6]

    J. C. Gao, Q. Tao and Z. A. Yao, A blowup criterion for the compressible nematic liquid crystal flows in dimension two, J. Math. Anal. Appl., 415 (2014), 33-52.doi: 10.1016/j.jmaa.2014.01.039.

    [7]

    B. L. Guo and Y. Q. Han, Global regular solutions for Landau-Lifshitz equation, Front. Math. China, 4 (2006), 538-568.doi: 10.1007/s11464-006-0027-5.

    [8]

    R. Hardt, D. Kinderlehrer and F. Lin, Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys., 105 (1986), 547-570.

    [9]

    X. P. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals, SIAM J. Math. Anal., 45 (2013), 2678-2699.doi: 10.1137/120898814.

    [10]

    J. R. Huang and S. J. Ding, Spherically symmetric solutions to compressible hydrodynamic flow of liquid crystals in N dimensions, Chin. Ann. Math., 33B (2012), 453-0478.

    [11]

    T. Huang, C. Y. Wang and H. Y. Wen, Strong solutions of the compressible nematic liquid crystal, J. Differential Equations, 252 (2012), 2222-2265.doi: 10.1016/j.jde.2011.07.036.

    [12]

    T. Huang, C. Y. Wang and H. Y. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.doi: 10.1007/s00205-011-0476-1.

    [13]

    X. D. Huang and Y. Wang, A Serrin criterion for compressible nematic liquid crystal flows, Math. Meth. Appl. Sci., 36 (2013), 1363-1375.doi: 10.1002/mma.2689.

    [14]

    F. Jiang, S. Jiang and D. H. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.doi: 10.1016/j.jfa.2013.07.026.

    [15]

    F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.doi: 10.1007/BF00251810.

    [16]

    F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814.doi: 10.1002/cpa.3160420605.

    [17]

    F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501-537.doi: 10.1002/cpa.3160480503.

    [18]

    F. H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid cyrstals, Discrete Contin. Dyn. Syst., 2 (1996) 1-22.

    [19]

    F. H. Lin and C. Y. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, arXiv:1408.4138.

    [20]

    J. Y. Lin, B. S. Lai and C. Y. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.doi: 10.1137/15M1007665.

    [21]

    Y. M. Qin and L. Huang, Global existence and regularity of a 1D liquid crystal system, Nonlinear Anal. Real World Appl., 15 (2014), 172-186.doi: 10.1016/j.nonrwa.2013.07.003.

    [22]

    Q. Tao, J. C. Gao and Z. A. Yao, Global strong solutions of the compressible nematic liquid crystal flow with the cylinder symmetry, Commun. Math. Sci., 13 (2015), 2065-2096.doi: 10.4310/CMS.2015.v13.n8.a5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(149) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return