Citation: |
[1] |
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078. |
[2] |
C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.doi: 10.1017/S0308210511000175. |
[3] |
B. Barrios, E. Colorado, R. Servadei and F. Sorai, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.doi: 10.1016/j.anihpc.2014.04.003. |
[4] |
K. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Diff. Equ., 193 (2003), 481-499.doi: 10.1016/S0022-0396(03)00121-9. |
[5] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.doi: 10.1016/j.anihpc.2013.02.001. |
[6] |
X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.doi: 10.1016/j.aim.2010.01.025. |
[7] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306. |
[8] |
D. Cao and H. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $R^N$, Pro. Roy. Soc. Edinburgh, 126 (1996), 443-463.doi: 10.1017/S0308210500022836. |
[9] |
E. Colorado, A. De Pablo and U. Sánches, Perturbations of a critical fractional equation, Pacific J. Math., 271 (2014), 65-85.doi: 10.2140/pjm.2014.271.65. |
[10] |
R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for the fractional Laplacians in $R$, Acta Math., 210 (2013), 261-318.doi: 10.1007/s11511-013-0095-9. |
[11] |
R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Lapacian, arXiv:1302.2652, (2013). |
[12] |
N. Hirano, Existence of entire positive solutions for nonhomogeneous elliptic equation, Nonlinear Anal., 29 (1997), 889-901.doi: 10.1016/S0362-546X(96)00176-9. |
[13] |
T. Hsu and H. Lin, Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $R^N$, J. Math. Anal. Appl., 365 (2010), 758-775.doi: 10.1016/j.jmaa.2009.12.004. |
[14] |
H. Lin, Multiple positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $\R^N$, Bound. value probl. 2012, 24 (2012), 17pp.doi: 10.1186/1687-2770-2012-24. |
[15] |
P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145. |
[16] |
P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. |
[17] |
R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam, 29 (2006), 1091-1126.doi: 10.4171/RMI/750. |
[18] |
R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.doi: 10.1016/j.jmaa.2011.12.032. |
[19] |
R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 5 (2013), 2105-2137.doi: 10.3934/dcds.2013.33.2105. |
[20] |
R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102. |
[21] |
R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464.doi: 10.3934/cpaa.2013.12.2445. |
[22] |
J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36 (2011), 21-41.doi: 10.1007/s00526-010-0378-3. |
[23] |
G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304. |
[24] |
H. Wang, Palais-Smale approaches to semilinear elliptic equations in unbounded domains, Electron J. Diff. Equ., Monogragh 06 (2004), 142pp. |
[25] |
T. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl., 318 (2006), 253-270.doi: 10.1016/j.jmaa.2005.05.057. |
[26] |
X, Yu, The Nehari manifold for elliptic equation involving the square root of the Laplacian, J. Diff. Equ., 252 (2012), 1283-1308.doi: 10.1016/j.jde.2011.09.015. |
[27] |
X. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Diff. Equ., 92 (1991), 163-178.doi: 10.1016/0022-0396(91)90045-B. |