September  2016, 15(5): 1743-1756. doi: 10.3934/cpaa.2016011

Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$

1. 

LAMFA CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens cedex, France

2. 

LAMFA CNRS UMR 6140, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens cedex

Received  September 2015 Revised  March 2016 Published  July 2016

We consider a damped forced nonlinear Schrödinger-Poisson system in $R^3$. This provides us with an infinite-dimensional dynamical system in the energy space $H^1(R^3)$. We prove the existence of a finite dimensional global attractor for this dynamical system.
Citation: Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011
References:
[1]

N. Akroune, Regularity of the attractor for a weakly damped Schrodinger equation on $R$,, \emph{Appl. Math. Lett.}, 12 (1999), 45.  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[2]

J. Ball, Global attractors for damped semilinear wave equations,, \emph{Partial Differential Equations and Applications, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

K. Benmlih, Stationary solutions for schrödinger-Poisson system in $\mathbbR^3$,, \emph{Proceedings of the 2002 Fez Conference on Partial Differential Equations}, (2002), 65.   Google Scholar

[4]

K. Benmlih and O. Kavian, Existence and asymptotic behaviour of standing waves for quasilinear Schröinger-Poisson systems in $R^3$,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'aire}, 25 (2008), 449.   Google Scholar

[5]

B. Bongioanni et J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, \emph{Proc. Indian. Acad. Sci. (Math. Sci.)}, 116 (2006), 337.  doi: 10.1007/BF02829750.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).   Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[8]

T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires,, Ellipses, (1990).   Google Scholar

[9]

A. Cipolatti and O. Kavian, On a nonlinear Schröinger equation modelling ultra-short laser pulses with a large noncompact global attractor,, \emph{Discrete Contin. Dyn. Syst.}, 17 (2007), 121.   Google Scholar

[10]

A. Dabaa, Comportement asymptotique des solutions d'un système d'équations de Schrödinger-Poisson,, Th\`ese, (2010).   Google Scholar

[11]

A. Dabaa, Comportement asymptotique des solutions d'un système d'équations de Schrödinger-Poisson sur un domaine borné de $\mathbbR^3$,, \emph{Ann. Math. Blaise Pascal}, 17 (2010), 199.   Google Scholar

[12]

J. M. Ghidaglia, Finite dimensional behaviour for weakly damped driven Schrödinger equations,, \emph{Ann.Inst. Henri Poincar\'e.}, 5 (1988), 365.   Google Scholar

[13]

J.-M. Ghidaglia, Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schröinger equations. Attractors, inertial manifolds and their approximation,, \emph{RAIRO Mod\'e. Math. Anal. Num\'e}, 23 (1989), 433.   Google Scholar

[14]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations,, \emph{Applicable Anal.}, 60 (1996), 99.  doi: 10.1080/00036819608840420.  Google Scholar

[15]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $R^2$,, \emph{Adv. Differential Equations}, 3 (1998), 337.   Google Scholar

[16]

O. Goubet and M. Hussein, Global attractor for the Davey-Stewartson system on $R^2$,, \emph{Commun. Pure Appl. Anal.}, 8 (2009), 1555.   Google Scholar

[17]

O. Goubet and L. Molinet, Global attractor for weakly damped nonlinear Schröinger equations in $L^2(R)$,, \emph{Nonlinear Anal.}, 71 (2009), 317.   Google Scholar

[18]

J. Hale, Asymptotic Behavior of Dissipative Systems,, Math. surveys and Monographs, 25 (1988).   Google Scholar

[19]

R. Illner, O. Kavian and H. Lange, Stationary solutions of quasi-linear Schrödinger-Poisson systems,, \emph{J. Differential equations}, 145 (1998), 1.   Google Scholar

[20]

R. Illner, H. Lange, B. Toomir and P. Zweifel, On quasi-linear Schrödinger-Poisson systems,, \emph{Math. Meth. Appl. Sci.}, 20 (1997), 1223.   Google Scholar

[21]

M. Jolly, T. Sadigov and E. Titi, A determining form for the damped driven nonlinear Schröinger equationfourier modes case,, \emph{J. Differential Equations}, 258 (2015), 2711.   Google Scholar

[22]

P. Laurençot, Long-time behaviour for weakly damped driven nonlinear Schroinger equations in $R^N$, $N\leq 3$,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[23]

P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer, (1990).   Google Scholar

[24]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,, Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (1030).  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[25]

L. Molinet, Global attractor and asymptotic smoothing effects for the weakly damped cubic Schröinger equation in $L^2(T)$,, \emph{Dyn. Partial Differ. Equ.}, 6 (2009).   Google Scholar

[26]

F. Nier, Schrödinger-Poisson systems in dimension $d\leq3$, the whole space case,, \emph{Proceedings of the Royal Society of Edinburgh}, 123A (1993), 1179.   Google Scholar

[27]

M. Oliver and E. Titi, Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schröinger equation,, \emph{Indiana Univ. Math. J.}, 47 (1998).   Google Scholar

[28]

G. Raugel, Global attractors in partial differential equations,, in \emph{Handbook of Dynamical Systems}, (2002), 885.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[29]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).   Google Scholar

[30]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications to their attractors,, \emph{Physica D}, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

show all references

References:
[1]

N. Akroune, Regularity of the attractor for a weakly damped Schrodinger equation on $R$,, \emph{Appl. Math. Lett.}, 12 (1999), 45.  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[2]

J. Ball, Global attractors for damped semilinear wave equations,, \emph{Partial Differential Equations and Applications, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

K. Benmlih, Stationary solutions for schrödinger-Poisson system in $\mathbbR^3$,, \emph{Proceedings of the 2002 Fez Conference on Partial Differential Equations}, (2002), 65.   Google Scholar

[4]

K. Benmlih and O. Kavian, Existence and asymptotic behaviour of standing waves for quasilinear Schröinger-Poisson systems in $R^3$,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'aire}, 25 (2008), 449.   Google Scholar

[5]

B. Bongioanni et J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, \emph{Proc. Indian. Acad. Sci. (Math. Sci.)}, 116 (2006), 337.  doi: 10.1007/BF02829750.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).   Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[8]

T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires,, Ellipses, (1990).   Google Scholar

[9]

A. Cipolatti and O. Kavian, On a nonlinear Schröinger equation modelling ultra-short laser pulses with a large noncompact global attractor,, \emph{Discrete Contin. Dyn. Syst.}, 17 (2007), 121.   Google Scholar

[10]

A. Dabaa, Comportement asymptotique des solutions d'un système d'équations de Schrödinger-Poisson,, Th\`ese, (2010).   Google Scholar

[11]

A. Dabaa, Comportement asymptotique des solutions d'un système d'équations de Schrödinger-Poisson sur un domaine borné de $\mathbbR^3$,, \emph{Ann. Math. Blaise Pascal}, 17 (2010), 199.   Google Scholar

[12]

J. M. Ghidaglia, Finite dimensional behaviour for weakly damped driven Schrödinger equations,, \emph{Ann.Inst. Henri Poincar\'e.}, 5 (1988), 365.   Google Scholar

[13]

J.-M. Ghidaglia, Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schröinger equations. Attractors, inertial manifolds and their approximation,, \emph{RAIRO Mod\'e. Math. Anal. Num\'e}, 23 (1989), 433.   Google Scholar

[14]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations,, \emph{Applicable Anal.}, 60 (1996), 99.  doi: 10.1080/00036819608840420.  Google Scholar

[15]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $R^2$,, \emph{Adv. Differential Equations}, 3 (1998), 337.   Google Scholar

[16]

O. Goubet and M. Hussein, Global attractor for the Davey-Stewartson system on $R^2$,, \emph{Commun. Pure Appl. Anal.}, 8 (2009), 1555.   Google Scholar

[17]

O. Goubet and L. Molinet, Global attractor for weakly damped nonlinear Schröinger equations in $L^2(R)$,, \emph{Nonlinear Anal.}, 71 (2009), 317.   Google Scholar

[18]

J. Hale, Asymptotic Behavior of Dissipative Systems,, Math. surveys and Monographs, 25 (1988).   Google Scholar

[19]

R. Illner, O. Kavian and H. Lange, Stationary solutions of quasi-linear Schrödinger-Poisson systems,, \emph{J. Differential equations}, 145 (1998), 1.   Google Scholar

[20]

R. Illner, H. Lange, B. Toomir and P. Zweifel, On quasi-linear Schrödinger-Poisson systems,, \emph{Math. Meth. Appl. Sci.}, 20 (1997), 1223.   Google Scholar

[21]

M. Jolly, T. Sadigov and E. Titi, A determining form for the damped driven nonlinear Schröinger equationfourier modes case,, \emph{J. Differential Equations}, 258 (2015), 2711.   Google Scholar

[22]

P. Laurençot, Long-time behaviour for weakly damped driven nonlinear Schroinger equations in $R^N$, $N\leq 3$,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[23]

P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer, (1990).   Google Scholar

[24]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,, Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (1030).  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[25]

L. Molinet, Global attractor and asymptotic smoothing effects for the weakly damped cubic Schröinger equation in $L^2(T)$,, \emph{Dyn. Partial Differ. Equ.}, 6 (2009).   Google Scholar

[26]

F. Nier, Schrödinger-Poisson systems in dimension $d\leq3$, the whole space case,, \emph{Proceedings of the Royal Society of Edinburgh}, 123A (1993), 1179.   Google Scholar

[27]

M. Oliver and E. Titi, Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schröinger equation,, \emph{Indiana Univ. Math. J.}, 47 (1998).   Google Scholar

[28]

G. Raugel, Global attractors in partial differential equations,, in \emph{Handbook of Dynamical Systems}, (2002), 885.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[29]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).   Google Scholar

[30]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications to their attractors,, \emph{Physica D}, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[12]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[15]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]