September  2016, 15(5): 1743-1756. doi: 10.3934/cpaa.2016011

Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$

1. 

LAMFA CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens cedex, France

2. 

LAMFA CNRS UMR 6140, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens cedex

Received  September 2015 Revised  March 2016 Published  July 2016

We consider a damped forced nonlinear Schrödinger-Poisson system in $R^3$. This provides us with an infinite-dimensional dynamical system in the energy space $H^1(R^3)$. We prove the existence of a finite dimensional global attractor for this dynamical system.
Citation: Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011
References:
[1]

N. Akroune, Regularity of the attractor for a weakly damped Schrodinger equation on $R$,, \emph{Appl. Math. Lett.}, 12 (1999), 45.  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[2]

J. Ball, Global attractors for damped semilinear wave equations,, \emph{Partial Differential Equations and Applications, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

K. Benmlih, Stationary solutions for schrödinger-Poisson system in $\mathbbR^3$,, \emph{Proceedings of the 2002 Fez Conference on Partial Differential Equations}, (2002), 65.   Google Scholar

[4]

K. Benmlih and O. Kavian, Existence and asymptotic behaviour of standing waves for quasilinear Schröinger-Poisson systems in $R^3$,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'aire}, 25 (2008), 449.   Google Scholar

[5]

B. Bongioanni et J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, \emph{Proc. Indian. Acad. Sci. (Math. Sci.)}, 116 (2006), 337.  doi: 10.1007/BF02829750.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).   Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[8]

T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires,, Ellipses, (1990).   Google Scholar

[9]

A. Cipolatti and O. Kavian, On a nonlinear Schröinger equation modelling ultra-short laser pulses with a large noncompact global attractor,, \emph{Discrete Contin. Dyn. Syst.}, 17 (2007), 121.   Google Scholar

[10]

A. Dabaa, Comportement asymptotique des solutions d'un système d'équations de Schrödinger-Poisson,, Th\`ese, (2010).   Google Scholar

[11]

A. Dabaa, Comportement asymptotique des solutions d'un système d'équations de Schrödinger-Poisson sur un domaine borné de $\mathbbR^3$,, \emph{Ann. Math. Blaise Pascal}, 17 (2010), 199.   Google Scholar

[12]

J. M. Ghidaglia, Finite dimensional behaviour for weakly damped driven Schrödinger equations,, \emph{Ann.Inst. Henri Poincar\'e.}, 5 (1988), 365.   Google Scholar

[13]

J.-M. Ghidaglia, Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schröinger equations. Attractors, inertial manifolds and their approximation,, \emph{RAIRO Mod\'e. Math. Anal. Num\'e}, 23 (1989), 433.   Google Scholar

[14]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations,, \emph{Applicable Anal.}, 60 (1996), 99.  doi: 10.1080/00036819608840420.  Google Scholar

[15]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $R^2$,, \emph{Adv. Differential Equations}, 3 (1998), 337.   Google Scholar

[16]

O. Goubet and M. Hussein, Global attractor for the Davey-Stewartson system on $R^2$,, \emph{Commun. Pure Appl. Anal.}, 8 (2009), 1555.   Google Scholar

[17]

O. Goubet and L. Molinet, Global attractor for weakly damped nonlinear Schröinger equations in $L^2(R)$,, \emph{Nonlinear Anal.}, 71 (2009), 317.   Google Scholar

[18]

J. Hale, Asymptotic Behavior of Dissipative Systems,, Math. surveys and Monographs, 25 (1988).   Google Scholar

[19]

R. Illner, O. Kavian and H. Lange, Stationary solutions of quasi-linear Schrödinger-Poisson systems,, \emph{J. Differential equations}, 145 (1998), 1.   Google Scholar

[20]

R. Illner, H. Lange, B. Toomir and P. Zweifel, On quasi-linear Schrödinger-Poisson systems,, \emph{Math. Meth. Appl. Sci.}, 20 (1997), 1223.   Google Scholar

[21]

M. Jolly, T. Sadigov and E. Titi, A determining form for the damped driven nonlinear Schröinger equationfourier modes case,, \emph{J. Differential Equations}, 258 (2015), 2711.   Google Scholar

[22]

P. Laurençot, Long-time behaviour for weakly damped driven nonlinear Schroinger equations in $R^N$, $N\leq 3$,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[23]

P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer, (1990).   Google Scholar

[24]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,, Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (1030).  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[25]

L. Molinet, Global attractor and asymptotic smoothing effects for the weakly damped cubic Schröinger equation in $L^2(T)$,, \emph{Dyn. Partial Differ. Equ.}, 6 (2009).   Google Scholar

[26]

F. Nier, Schrödinger-Poisson systems in dimension $d\leq3$, the whole space case,, \emph{Proceedings of the Royal Society of Edinburgh}, 123A (1993), 1179.   Google Scholar

[27]

M. Oliver and E. Titi, Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schröinger equation,, \emph{Indiana Univ. Math. J.}, 47 (1998).   Google Scholar

[28]

G. Raugel, Global attractors in partial differential equations,, in \emph{Handbook of Dynamical Systems}, (2002), 885.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[29]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).   Google Scholar

[30]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications to their attractors,, \emph{Physica D}, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

show all references

References:
[1]

N. Akroune, Regularity of the attractor for a weakly damped Schrodinger equation on $R$,, \emph{Appl. Math. Lett.}, 12 (1999), 45.  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[2]

J. Ball, Global attractors for damped semilinear wave equations,, \emph{Partial Differential Equations and Applications, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

K. Benmlih, Stationary solutions for schrödinger-Poisson system in $\mathbbR^3$,, \emph{Proceedings of the 2002 Fez Conference on Partial Differential Equations}, (2002), 65.   Google Scholar

[4]

K. Benmlih and O. Kavian, Existence and asymptotic behaviour of standing waves for quasilinear Schröinger-Poisson systems in $R^3$,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'aire}, 25 (2008), 449.   Google Scholar

[5]

B. Bongioanni et J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, \emph{Proc. Indian. Acad. Sci. (Math. Sci.)}, 116 (2006), 337.  doi: 10.1007/BF02829750.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).   Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[8]

T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires,, Ellipses, (1990).   Google Scholar

[9]

A. Cipolatti and O. Kavian, On a nonlinear Schröinger equation modelling ultra-short laser pulses with a large noncompact global attractor,, \emph{Discrete Contin. Dyn. Syst.}, 17 (2007), 121.   Google Scholar

[10]

A. Dabaa, Comportement asymptotique des solutions d'un système d'équations de Schrödinger-Poisson,, Th\`ese, (2010).   Google Scholar

[11]

A. Dabaa, Comportement asymptotique des solutions d'un système d'équations de Schrödinger-Poisson sur un domaine borné de $\mathbbR^3$,, \emph{Ann. Math. Blaise Pascal}, 17 (2010), 199.   Google Scholar

[12]

J. M. Ghidaglia, Finite dimensional behaviour for weakly damped driven Schrödinger equations,, \emph{Ann.Inst. Henri Poincar\'e.}, 5 (1988), 365.   Google Scholar

[13]

J.-M. Ghidaglia, Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schröinger equations. Attractors, inertial manifolds and their approximation,, \emph{RAIRO Mod\'e. Math. Anal. Num\'e}, 23 (1989), 433.   Google Scholar

[14]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations,, \emph{Applicable Anal.}, 60 (1996), 99.  doi: 10.1080/00036819608840420.  Google Scholar

[15]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $R^2$,, \emph{Adv. Differential Equations}, 3 (1998), 337.   Google Scholar

[16]

O. Goubet and M. Hussein, Global attractor for the Davey-Stewartson system on $R^2$,, \emph{Commun. Pure Appl. Anal.}, 8 (2009), 1555.   Google Scholar

[17]

O. Goubet and L. Molinet, Global attractor for weakly damped nonlinear Schröinger equations in $L^2(R)$,, \emph{Nonlinear Anal.}, 71 (2009), 317.   Google Scholar

[18]

J. Hale, Asymptotic Behavior of Dissipative Systems,, Math. surveys and Monographs, 25 (1988).   Google Scholar

[19]

R. Illner, O. Kavian and H. Lange, Stationary solutions of quasi-linear Schrödinger-Poisson systems,, \emph{J. Differential equations}, 145 (1998), 1.   Google Scholar

[20]

R. Illner, H. Lange, B. Toomir and P. Zweifel, On quasi-linear Schrödinger-Poisson systems,, \emph{Math. Meth. Appl. Sci.}, 20 (1997), 1223.   Google Scholar

[21]

M. Jolly, T. Sadigov and E. Titi, A determining form for the damped driven nonlinear Schröinger equationfourier modes case,, \emph{J. Differential Equations}, 258 (2015), 2711.   Google Scholar

[22]

P. Laurençot, Long-time behaviour for weakly damped driven nonlinear Schroinger equations in $R^N$, $N\leq 3$,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[23]

P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer, (1990).   Google Scholar

[24]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,, Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (1030).  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[25]

L. Molinet, Global attractor and asymptotic smoothing effects for the weakly damped cubic Schröinger equation in $L^2(T)$,, \emph{Dyn. Partial Differ. Equ.}, 6 (2009).   Google Scholar

[26]

F. Nier, Schrödinger-Poisson systems in dimension $d\leq3$, the whole space case,, \emph{Proceedings of the Royal Society of Edinburgh}, 123A (1993), 1179.   Google Scholar

[27]

M. Oliver and E. Titi, Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schröinger equation,, \emph{Indiana Univ. Math. J.}, 47 (1998).   Google Scholar

[28]

G. Raugel, Global attractors in partial differential equations,, in \emph{Handbook of Dynamical Systems}, (2002), 885.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[29]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).   Google Scholar

[30]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications to their attractors,, \emph{Physica D}, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[1]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[2]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[3]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

[4]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[5]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[6]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[7]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[8]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[9]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[10]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[11]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[12]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[13]

Marius Ghergu, Gurpreet Singh. On a class of mixed Choquard-Schrödinger-Poisson systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 297-309. doi: 10.3934/dcdss.2019021

[14]

Pierre-Damien Thizy. Schrödinger-Poisson systems in $4$-dimensional closed manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2257-2284. doi: 10.3934/dcds.2016.36.2257

[15]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[16]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[17]

Dengfeng Lü. Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 605-626. doi: 10.3934/cpaa.2018033

[18]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[19]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[20]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]