September  2016, 15(5): 1797-1807. doi: 10.3934/cpaa.2016015

A direct method of moving planes for fractional Laplacian equations in the unit ball

1. 

Department of Mathematics, Henan Normal University, Xinxiang, 453007, China

Received  October 2015 Revised  March 2016 Published  July 2016

In this paper, we employ a direct method of moving planes for the fractional Laplacian equation in the unit ball. Instead of using the conventional extension method introduced by Caffarelli and Silvestre [6], Chen, Li and Li developed a direct method of moving planes for the fractional Laplacian [8]. Inspired by this new method, in this paper we deal with the semilinear pseudo -differential equation in the unit ball directly. We first review key ingredients needed in the method of moving planes in a bounded domain, such as the narrow region principle for the fractional Laplacian. Then, by using this new method, we obtain the radial symmetry and monotonicity of positive solutions for some interesting semi-linear equations.
Citation: Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015
References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2$^{st}$ edition, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics,, 121, (1996).   Google Scholar

[3]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media,, \emph{Statistical mechanics, 195 (1990), 127.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[4]

C. Brändle, E. Colorado, A. De Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc Royal Soc Edinburgh}, A143 (2013), 39.   Google Scholar

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv in Math}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, \emph{Ann Math}, 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[8]

W. X. Chen, C. C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian,, preprint, ().   Google Scholar

[9]

W. X. Chen, C. C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm Pure Appl Math}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

W. X. Chen, C. C. Li and B. Ou, Qualitative properities of solutions for an integral equation,, \emph{Disc Cont Dyn Sys}, 12 (2005), 347.   Google Scholar

[11]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems,, preprint, ().   Google Scholar

[12]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence,, \emph{Mathematical Foundation of Turbulent Viscous Flows Lecture Notes in Mathematics}, 1871 (2006), 1.  doi: 10.1007/11545989_1.  Google Scholar

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm Math Phys}, 68 (1979), 209.   Google Scholar

[14]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, \emph{Mathematical Analysis and Applications}, (1981), 369.   Google Scholar

[15]

C. C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, \emph{SIAM Journal on Mathematical Analysis}, 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, \emph{Journal of Differential Equations}, 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04.008.  Google Scholar

[17]

E. Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces,, \emph{Bull Sci Math}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of systems with long-range interaction,, \emph{Comm Non1 Sci Numer Simul}, 11 (2006), 885.  doi: 10.1016/j.cnsns.2006.03.005.  Google Scholar

show all references

References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2$^{st}$ edition, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics,, 121, (1996).   Google Scholar

[3]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media,, \emph{Statistical mechanics, 195 (1990), 127.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[4]

C. Brändle, E. Colorado, A. De Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc Royal Soc Edinburgh}, A143 (2013), 39.   Google Scholar

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv in Math}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, \emph{Ann Math}, 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[8]

W. X. Chen, C. C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian,, preprint, ().   Google Scholar

[9]

W. X. Chen, C. C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm Pure Appl Math}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

W. X. Chen, C. C. Li and B. Ou, Qualitative properities of solutions for an integral equation,, \emph{Disc Cont Dyn Sys}, 12 (2005), 347.   Google Scholar

[11]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems,, preprint, ().   Google Scholar

[12]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence,, \emph{Mathematical Foundation of Turbulent Viscous Flows Lecture Notes in Mathematics}, 1871 (2006), 1.  doi: 10.1007/11545989_1.  Google Scholar

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm Math Phys}, 68 (1979), 209.   Google Scholar

[14]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, \emph{Mathematical Analysis and Applications}, (1981), 369.   Google Scholar

[15]

C. C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, \emph{SIAM Journal on Mathematical Analysis}, 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, \emph{Journal of Differential Equations}, 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04.008.  Google Scholar

[17]

E. Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces,, \emph{Bull Sci Math}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of systems with long-range interaction,, \emph{Comm Non1 Sci Numer Simul}, 11 (2006), 885.  doi: 10.1016/j.cnsns.2006.03.005.  Google Scholar

[1]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[2]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[3]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[4]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[5]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[6]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[7]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[8]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[9]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[10]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[11]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[12]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[13]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[14]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[15]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[16]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[17]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[18]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[19]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]