September  2016, 15(5): 1797-1807. doi: 10.3934/cpaa.2016015

A direct method of moving planes for fractional Laplacian equations in the unit ball

1. 

Department of Mathematics, Henan Normal University, Xinxiang, 453007, China

Received  October 2015 Revised  March 2016 Published  July 2016

In this paper, we employ a direct method of moving planes for the fractional Laplacian equation in the unit ball. Instead of using the conventional extension method introduced by Caffarelli and Silvestre [6], Chen, Li and Li developed a direct method of moving planes for the fractional Laplacian [8]. Inspired by this new method, in this paper we deal with the semilinear pseudo -differential equation in the unit ball directly. We first review key ingredients needed in the method of moving planes in a bounded domain, such as the narrow region principle for the fractional Laplacian. Then, by using this new method, we obtain the radial symmetry and monotonicity of positive solutions for some interesting semi-linear equations.
Citation: Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015
References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2$^{st}$ edition, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics,, 121, (1996).   Google Scholar

[3]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media,, \emph{Statistical mechanics, 195 (1990), 127.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[4]

C. Brändle, E. Colorado, A. De Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc Royal Soc Edinburgh}, A143 (2013), 39.   Google Scholar

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv in Math}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, \emph{Ann Math}, 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[8]

W. X. Chen, C. C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian,, preprint, ().   Google Scholar

[9]

W. X. Chen, C. C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm Pure Appl Math}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

W. X. Chen, C. C. Li and B. Ou, Qualitative properities of solutions for an integral equation,, \emph{Disc Cont Dyn Sys}, 12 (2005), 347.   Google Scholar

[11]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems,, preprint, ().   Google Scholar

[12]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence,, \emph{Mathematical Foundation of Turbulent Viscous Flows Lecture Notes in Mathematics}, 1871 (2006), 1.  doi: 10.1007/11545989_1.  Google Scholar

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm Math Phys}, 68 (1979), 209.   Google Scholar

[14]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, \emph{Mathematical Analysis and Applications}, (1981), 369.   Google Scholar

[15]

C. C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, \emph{SIAM Journal on Mathematical Analysis}, 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, \emph{Journal of Differential Equations}, 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04.008.  Google Scholar

[17]

E. Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces,, \emph{Bull Sci Math}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of systems with long-range interaction,, \emph{Comm Non1 Sci Numer Simul}, 11 (2006), 885.  doi: 10.1016/j.cnsns.2006.03.005.  Google Scholar

show all references

References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2$^{st}$ edition, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics,, 121, (1996).   Google Scholar

[3]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media,, \emph{Statistical mechanics, 195 (1990), 127.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[4]

C. Brändle, E. Colorado, A. De Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc Royal Soc Edinburgh}, A143 (2013), 39.   Google Scholar

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv in Math}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, \emph{Ann Math}, 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[8]

W. X. Chen, C. C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian,, preprint, ().   Google Scholar

[9]

W. X. Chen, C. C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm Pure Appl Math}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

W. X. Chen, C. C. Li and B. Ou, Qualitative properities of solutions for an integral equation,, \emph{Disc Cont Dyn Sys}, 12 (2005), 347.   Google Scholar

[11]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems,, preprint, ().   Google Scholar

[12]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence,, \emph{Mathematical Foundation of Turbulent Viscous Flows Lecture Notes in Mathematics}, 1871 (2006), 1.  doi: 10.1007/11545989_1.  Google Scholar

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm Math Phys}, 68 (1979), 209.   Google Scholar

[14]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, \emph{Mathematical Analysis and Applications}, (1981), 369.   Google Scholar

[15]

C. C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, \emph{SIAM Journal on Mathematical Analysis}, 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, \emph{Journal of Differential Equations}, 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04.008.  Google Scholar

[17]

E. Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces,, \emph{Bull Sci Math}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of systems with long-range interaction,, \emph{Comm Non1 Sci Numer Simul}, 11 (2006), 885.  doi: 10.1016/j.cnsns.2006.03.005.  Google Scholar

[1]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[4]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]