September  2016, 15(5): 1809-1823. doi: 10.3934/cpaa.2016016

On small data scattering of Hartree equations with short-range interaction

1. 

Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756

2. 

National Center for Theoretical Sciences, No. 1 Sec. 4 Roosevelt Rd., National Taiwan University, Taipei, 106, Taiwan

3. 

Department of Applied Physics, Waseda University, Tokyo, 169-8555

Received  October 2015 Revised  May 2016 Published  July 2016

In this note we study Hartree type equations with $|\nabla|^\alpha (1 < \alpha \le 2)$ and potential whose Fourier transform behaves like $|\xi|^{-(d-\gamma_1)}$ at the origin and $|\xi|^{-(d-\gamma_2)}$ at infinity. We show non-existence of scattering when $0 < \gamma_1 \le 1$ and small data scattering in $H^s$ for $s > \frac{2-\alpha}2$ when $2 < \gamma_1 \le d$ and $0 < \gamma_2 \le 2$. For this we use $U^p-V^p$ space argument and Strichartz estimates.
Citation: Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016
References:
[1]

Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, \emph{Funkacialaj Ekvacioj}, 56 (2013), 193.  doi: 10.1619/fesi.56.193.  Google Scholar

[2]

Y. Cho and T. Ozawa, On the semi-relativisitc Hartree type equation,, \emph{SIAM J. Math. Anal.}, 38 (2006), 1060.  doi: 10.1137/060653688.  Google Scholar

[3]

Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1121.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[4]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space,, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 917.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[5]

N. Hayashi and P. I. Naumkin, Remarks on Scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential,, \emph{SUT J. Math.}, 34 (1998), 13.   Google Scholar

[6]

N. Hayashi and P. I. Naumkin, Scattering theory and asymptotics for large time of solutions to the Hartree type equations with a long range potential,, \emph{Hokkaido Math. J.}, 30 (2001), 137.  doi: 10.14492/hokmj/1350911928.  Google Scholar

[7]

N. Hayashi, P. I. Naumkin and T. Ogawa, Scattering operator for semirelativistic Hartree type equation with a short range potential,, \emph{Diff. Int. Equations}, 28 (2015), 1085.   Google Scholar

[8]

N. Hayashi, P.I. Naumkin and T. Ozawa, Scattering theory for the Hartree equation,, \emph{SIAM J. Math. Anal.}, 29 (1998), 1256.  doi: 10.1137/S0036141096312222.  Google Scholar

[9]

N. Hayashi and Y. Tsutsumi, Scattering theory for Hartree type equations,, \emph{Ann. Inst. H. Poincare Phys. Theor.}, 46 (1987), 187.   Google Scholar

[10]

S. Herr and T. Tesfahun, Small data scattering for semi-relativistic equations with Hartree type nonlinearity,, \emph{J. Differential Equations}, 259 (2015), 5510.  doi: 10.1016/j.jde.2015.06.037.  Google Scholar

[11]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces,, \emph{Commun. Pure Appl. Anal.}, 14 (2015), 2265.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[12]

H. Koch, D. Tataru and M. Visan, Dispersive Equations and Nonlinear Waves,, Oberwolfach Seminars, 45 (2014).   Google Scholar

[13]

K. Nakanishi and T. Ozawa, Scattering Problem for Nonlinear Schrodinger and Hartree Equations,, Tosio Kato's method and principle for evolution equations in mathematical physics (Sapporo, (2001).   Google Scholar

[14]

F. Pusateri, Modified scattering for the Boson star equation,, \emph{Commun. Math. Phys.}, 332 (2014), 1203.  doi: 10.1007/s00220-014-2094-x.  Google Scholar

show all references

References:
[1]

Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, \emph{Funkacialaj Ekvacioj}, 56 (2013), 193.  doi: 10.1619/fesi.56.193.  Google Scholar

[2]

Y. Cho and T. Ozawa, On the semi-relativisitc Hartree type equation,, \emph{SIAM J. Math. Anal.}, 38 (2006), 1060.  doi: 10.1137/060653688.  Google Scholar

[3]

Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1121.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[4]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space,, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 917.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[5]

N. Hayashi and P. I. Naumkin, Remarks on Scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential,, \emph{SUT J. Math.}, 34 (1998), 13.   Google Scholar

[6]

N. Hayashi and P. I. Naumkin, Scattering theory and asymptotics for large time of solutions to the Hartree type equations with a long range potential,, \emph{Hokkaido Math. J.}, 30 (2001), 137.  doi: 10.14492/hokmj/1350911928.  Google Scholar

[7]

N. Hayashi, P. I. Naumkin and T. Ogawa, Scattering operator for semirelativistic Hartree type equation with a short range potential,, \emph{Diff. Int. Equations}, 28 (2015), 1085.   Google Scholar

[8]

N. Hayashi, P.I. Naumkin and T. Ozawa, Scattering theory for the Hartree equation,, \emph{SIAM J. Math. Anal.}, 29 (1998), 1256.  doi: 10.1137/S0036141096312222.  Google Scholar

[9]

N. Hayashi and Y. Tsutsumi, Scattering theory for Hartree type equations,, \emph{Ann. Inst. H. Poincare Phys. Theor.}, 46 (1987), 187.   Google Scholar

[10]

S. Herr and T. Tesfahun, Small data scattering for semi-relativistic equations with Hartree type nonlinearity,, \emph{J. Differential Equations}, 259 (2015), 5510.  doi: 10.1016/j.jde.2015.06.037.  Google Scholar

[11]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces,, \emph{Commun. Pure Appl. Anal.}, 14 (2015), 2265.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[12]

H. Koch, D. Tataru and M. Visan, Dispersive Equations and Nonlinear Waves,, Oberwolfach Seminars, 45 (2014).   Google Scholar

[13]

K. Nakanishi and T. Ozawa, Scattering Problem for Nonlinear Schrodinger and Hartree Equations,, Tosio Kato's method and principle for evolution equations in mathematical physics (Sapporo, (2001).   Google Scholar

[14]

F. Pusateri, Modified scattering for the Boson star equation,, \emph{Commun. Math. Phys.}, 332 (2014), 1203.  doi: 10.1007/s00220-014-2094-x.  Google Scholar

[1]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[7]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[8]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[9]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[10]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[11]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[12]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[18]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[19]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[20]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]