September  2016, 15(5): 1825-1840. doi: 10.3934/cpaa.2016017

Liouville type theorems for singular integral equations and integral systems

1. 

Institute for Advanced Study, Shenzhen University, Shenzhen Guangdong, 518060

Received  October 2015 Revised  February 2016 Published  July 2016

In this paper, we establish some Liouville type theorems for positive solutions of some integral equations and integral systems in $R^N$. The main technique we use is the method of moving planes in an integral form.
Citation: Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017
References:
[1]

H. Berestycki, L. A. Caffarelli and L. Nireberg, Further qualitative properties for elliptic equations in unbounded domains,, \emph{Ann. Norm. Sup. Pisa. C1. Sci.}, 25 (1997), 69.   Google Scholar

[2]

G. Bianchi, Nonexistence of positive solutions to semilinear elliptic equations on $ R^N$ or $ R^N_+$ through the method of moving planes,, \emph{Comm. P.D.E.}, 22 (1997), 1671.  doi: 10.1080/03605309708821315.  Google Scholar

[3]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth,, \emph{Comm. Pure App. Math.}, XLII (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, \emph{Duke Math. J.}, 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[5]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, \emph{Disc. Cont. Dyn. Sys.}, 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[6]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, \emph{Acta Mathematica Scientia}, 29 (2009), 949.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[7]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series, (2010).   Google Scholar

[8]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, \emph{Discrete Contin. Dyn. Syst.}, 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[9]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure and Appl. Math.}, LIX (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, \emph{Comm. P.D.E.}, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[11]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, \emph{Rev. Mat. Iberoamericana}, 20 (2004), 67.   Google Scholar

[12]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, \emph{Advances in Mathematics}, 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[13]

D. G. De Figueiredo and P. L. Felmer, A liouville type theorem for Elliptic systems,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 21 (1994), 387.   Google Scholar

[14]

D. G. De Figueiredo and B. Sirakov, Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems,, \emph{Math. Ann.}, 333 (2005), 231.  doi: 10.1007/s00208-005-0639-1.  Google Scholar

[15]

B. Gidas and J. Spruk, A priori bounds of positive solutions of nonlinear elliptic equations,, \emph{Comm. P.D.E.}, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[16]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle,, \emph{Commun. Math. Phys.}, 68 (1979), 525.   Google Scholar

[17]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $ R^N$,, \emph{Comm. P.D.E.}, 33 (2008), 263.  doi: 10.1080/03605300701257476.  Google Scholar

[18]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, \emph{Ann. Inst. H. Poincare Anal. Non Lineaire}, 26 (2009), 1.  doi: 10.1016/j.anihpc.2007.03.006.  Google Scholar

[19]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, \emph{Proc. Amer. Math. Soc.}, 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[20]

C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents,, \emph{SIAM J. Math. Anal.}, 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[21]

Y. Li, Remarks on some conformally invariant integral equations: the method of moving spheres,, \emph{J. Eur. Math. Soc.}, 6 (2004), 153.   Google Scholar

[22]

E. Lieb, Sharp Constants in the Hardy-Littlewood-Sobolev inequalities,, \emph{Ann. of Math.}, 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[23]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, \emph{Comm. Pure and Appl, 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[24]

L. Ma and D. Chen, Radial symmetry and monotonicity results for an integral equation,, \emph{J. Math. Anal. Appl.}, 2 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[25]

L. Ma and D. Chen, Radial symmetry and uniqueness of non-negative solutions to an integral system,, \emph{Math. Comput. Modelling}, (2009), 379.  doi: 10.1016/j.mcm.2008.06.010.  Google Scholar

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, \emph{Advances in Mathematics}, 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Ration. Mech. Anal., 195 (2010), 455.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[28]

E. Mitidieri, Non-existence of positive solutions of semilinear systems in $ R^N$,, \emph{Diff. Int. Eq.}, 9 (1996), 465.   Google Scholar

[29]

W. M. Ni and J. Serrin, Non-existence theorems for quasilinear partial differential equations,, \emph{Rend. Circ. Mat. Palermo, 8 (1985), 171.   Google Scholar

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, \emph{Diff. Int. Eq.}, 9 (1996), 635.   Google Scholar

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system,, \emph{Atti Sem. Mat. Fis. Univ. Modena. Sippl.}, 46 (1998), 369.   Google Scholar

[32]

J. Serrin and H. Zou, The existence of positive entire solutions of elliptic Hamiltonian system,, \emph{Comm. P.D.E.}, 23 (1998), 577.  doi: 10.1080/03605309808821356.  Google Scholar

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, \emph{Advances in Mathematics}, 221 (2009), 1409.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions,, \emph{Diff. Int. Eq.}, 8 (1995), 1911.   Google Scholar

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, \emph{Adv. Diff. Eq.}, 1 (1996), 241.   Google Scholar

[36]

X. Yu, Liouville type theorems for integral equations and integral systems,, \emph{Calculus of Variations and Partial Differential Equations}, 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

show all references

References:
[1]

H. Berestycki, L. A. Caffarelli and L. Nireberg, Further qualitative properties for elliptic equations in unbounded domains,, \emph{Ann. Norm. Sup. Pisa. C1. Sci.}, 25 (1997), 69.   Google Scholar

[2]

G. Bianchi, Nonexistence of positive solutions to semilinear elliptic equations on $ R^N$ or $ R^N_+$ through the method of moving planes,, \emph{Comm. P.D.E.}, 22 (1997), 1671.  doi: 10.1080/03605309708821315.  Google Scholar

[3]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth,, \emph{Comm. Pure App. Math.}, XLII (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, \emph{Duke Math. J.}, 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[5]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, \emph{Disc. Cont. Dyn. Sys.}, 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[6]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, \emph{Acta Mathematica Scientia}, 29 (2009), 949.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[7]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series, (2010).   Google Scholar

[8]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, \emph{Discrete Contin. Dyn. Syst.}, 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[9]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure and Appl. Math.}, LIX (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, \emph{Comm. P.D.E.}, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[11]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, \emph{Rev. Mat. Iberoamericana}, 20 (2004), 67.   Google Scholar

[12]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, \emph{Advances in Mathematics}, 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[13]

D. G. De Figueiredo and P. L. Felmer, A liouville type theorem for Elliptic systems,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 21 (1994), 387.   Google Scholar

[14]

D. G. De Figueiredo and B. Sirakov, Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems,, \emph{Math. Ann.}, 333 (2005), 231.  doi: 10.1007/s00208-005-0639-1.  Google Scholar

[15]

B. Gidas and J. Spruk, A priori bounds of positive solutions of nonlinear elliptic equations,, \emph{Comm. P.D.E.}, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[16]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle,, \emph{Commun. Math. Phys.}, 68 (1979), 525.   Google Scholar

[17]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $ R^N$,, \emph{Comm. P.D.E.}, 33 (2008), 263.  doi: 10.1080/03605300701257476.  Google Scholar

[18]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, \emph{Ann. Inst. H. Poincare Anal. Non Lineaire}, 26 (2009), 1.  doi: 10.1016/j.anihpc.2007.03.006.  Google Scholar

[19]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, \emph{Proc. Amer. Math. Soc.}, 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[20]

C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents,, \emph{SIAM J. Math. Anal.}, 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[21]

Y. Li, Remarks on some conformally invariant integral equations: the method of moving spheres,, \emph{J. Eur. Math. Soc.}, 6 (2004), 153.   Google Scholar

[22]

E. Lieb, Sharp Constants in the Hardy-Littlewood-Sobolev inequalities,, \emph{Ann. of Math.}, 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[23]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, \emph{Comm. Pure and Appl, 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[24]

L. Ma and D. Chen, Radial symmetry and monotonicity results for an integral equation,, \emph{J. Math. Anal. Appl.}, 2 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[25]

L. Ma and D. Chen, Radial symmetry and uniqueness of non-negative solutions to an integral system,, \emph{Math. Comput. Modelling}, (2009), 379.  doi: 10.1016/j.mcm.2008.06.010.  Google Scholar

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, \emph{Advances in Mathematics}, 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Ration. Mech. Anal., 195 (2010), 455.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[28]

E. Mitidieri, Non-existence of positive solutions of semilinear systems in $ R^N$,, \emph{Diff. Int. Eq.}, 9 (1996), 465.   Google Scholar

[29]

W. M. Ni and J. Serrin, Non-existence theorems for quasilinear partial differential equations,, \emph{Rend. Circ. Mat. Palermo, 8 (1985), 171.   Google Scholar

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, \emph{Diff. Int. Eq.}, 9 (1996), 635.   Google Scholar

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system,, \emph{Atti Sem. Mat. Fis. Univ. Modena. Sippl.}, 46 (1998), 369.   Google Scholar

[32]

J. Serrin and H. Zou, The existence of positive entire solutions of elliptic Hamiltonian system,, \emph{Comm. P.D.E.}, 23 (1998), 577.  doi: 10.1080/03605309808821356.  Google Scholar

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, \emph{Advances in Mathematics}, 221 (2009), 1409.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions,, \emph{Diff. Int. Eq.}, 8 (1995), 1911.   Google Scholar

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, \emph{Adv. Diff. Eq.}, 1 (1996), 241.   Google Scholar

[36]

X. Yu, Liouville type theorems for integral equations and integral systems,, \emph{Calculus of Variations and Partial Differential Equations}, 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[5]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[6]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[11]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[12]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[13]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[14]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[15]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[16]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[17]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[18]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[19]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[20]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]