-
Previous Article
Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms
- CPAA Home
- This Issue
-
Next Article
Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four
Smooth quasi-periodic solutions for the perturbed mKdV equation
1. | School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, 450001, China |
References:
[1] |
W. Ames, Nonlinear Partial Differential Equations, New York: Academic Press, 1967. |
[2] |
P. Baldi, Periodic solutions of forced Kirchhoff equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (2009), 117-141. |
[3] |
P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. Inst. H. Poincare Anal. Non Linaire, 30 (2013), 33-77.
doi: 10.1016/j.anihpc.2012.06.001. |
[4] |
P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536.
doi: 10.1007/s00208-013-1001-7. |
[5] |
P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear KdV, C. R. Math. Acad. Sci. Paris, 352 (2014), 603-607.
doi: 10.1016/j.crma.2014.04.012. |
[6] |
M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equations, Arch. Ration. Mech. Anal., 212 (2014), 905-955.
doi: 10.1007/s00205-014-0726-0. |
[7] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Analysis, 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[8] |
J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde, Int. Math. Res. Notices, 11 (1994), 45-497.
doi: 10.1155/S1073792894000516. |
[9] |
J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation, Ann. Math., 148 (1998), 363-439.
doi: 10.2307/121001. |
[10] |
J. Bourgain, Green's function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies, 158, Princeton University Press, 2005.
doi: 10.1515/9781400837144. |
[11] |
J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2005), 62-94.
doi: 10.1016/j.jfa.2004.10.019. |
[12] |
L. Chierchia and J. You, KAM tori for 1D nonlinear wave equation with periodic boundary conditions, Commun. Math. Phys., 211 (2000), 497-525.
doi: 10.1007/s002200050824. |
[13] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness results for periodic and non-periodic KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1. |
[14] |
R. Feola and M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, Journal of Differential Equations, 259 (2015), 3389-3447.
doi: 10.1016/j.jde.2015.04.025. |
[15] |
G. Iooss, P. I. Plotnikov and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., 177 (2005), 367-478.
doi: 10.1007/s00205-005-0381-6. |
[16] |
T. Kappler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, Heidelberg, 2003.
doi: 10.1007/978-3-662-08054-2. |
[17] |
T. S. Komatsu and S. I. Sasa, Kink soliton characterizing traffic congestion, Phys. Rev. E, 52 (1995), 5574-5582. |
[18] |
S. B. Kuksin, Hamiltonian perturbation of infinite-dimensional linear system with an imaginary spectrum, Funkt. Anal. Prilozh., 21, 22-37. [English translation in Funct. Anal. Appl., 21 (1987), 192-205.] |
[19] |
S. B. Kuksin, Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR, ser. Mat., 52, 41-63. [English translation in Math. USSR Izv., 32 (1989), 39-62.] |
[20] |
S. B. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Berlin: Springer-Verlag, 1993. |
[21] |
S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.
doi: 10.2307/2118656. |
[22] |
S. B. Kuksin, On small denominators equations with large variable coefficients, J. Appl. Math. Phys. (ZAMP), 48 (1997), 262-271.
doi: 10.1007/PL00001476. |
[23] |
S. B. Kuksin, A KAM theorem for equations of the Korteweg-de Vries type, Rev. Math-Math Phys., 10 (1998), 1-64. |
[24] |
S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000. |
[25] |
J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172.
doi: 10.1002/cpa.20314. |
[26] |
J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673.
doi: 10.1007/s00220-011-1353-3. |
[27] |
J. Liu and X. Yuan, KAM for the derivative nonliear Schrödinger equation with periodic boundary conditions, Journal of Differential equations, 256 (2014), 1627-1652.
doi: 10.1016/j.jde.2013.11.007. |
[28] |
S. Matsutani and H. Tsuru, Reflectionless quantum wire, Journal of the Physical Society of Japan, 60 (1991), 3640-3644.
doi: 10.1143/JPSJ.60.3640. |
[29] |
L. Mi, Quasi-periodic solutions of derivative nonlinear Schrödinger equations with a given potential, Journal of Mathematical Analysis and Applications, 390 (2012), 335-354.
doi: 10.1016/j.jmaa.2012.01.046. |
[30] |
L. Mi and K. Zhang, Invariant tori for Benjamin-Ono equation with unbounded quasi-periodically forced perturbation, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 689-707.
doi: 10.3934/dcds.2014.34.689. |
[31] |
R. M. Miura, Korteweg-de Vries equation and generalizations, I. A remarkable explicit nonlinear transformation, J. Math. Phys., 9 (1968), 1202-1204. |
[32] |
J. Pöschel, A KAM theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisacl. Sci., 23 (1996), 119-148. |
[33] |
J. Pöschel, Quasi-periodic solutions for nonlinear wave equations, Comm. Math. Helv., 71 (1996), 269-296.
doi: 10.1007/BF02566420. |
[34] |
Y. Shi and J. Xu, KAM tori for defocusing modified KDV equation, Journal of Geometry and Physics, 90 (2015), 1-10.
doi: 10.1016/j.geomphys.2014.12.009. |
[35] |
C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equation via KAM theory, Commun. Math. Phys., 127 (1990), 479-528. |
[36] |
D. Yan, KAM tori for generalized Benjamin-Ono equation, Communications on Pure $&$ Applied Analysis, 14 (2015), 941-957.
doi: 10.3934/cpaa.2015.14.941. |
[37] |
X. Yuan and K. Zhang, A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation, J. Math. Phys., 54 (2013), 052701.
doi: 10.1063/1.4803852. |
[38] |
J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228.
doi: 10.1088/0951-7715/24/4/010. |
[39] |
V. Ziegler, J. Dinkel, C. Setzer and K. E. Lonngren, On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line, Chaos, Solitons $&$ Fractals, 12 (2001), 1719-1728. |
show all references
References:
[1] |
W. Ames, Nonlinear Partial Differential Equations, New York: Academic Press, 1967. |
[2] |
P. Baldi, Periodic solutions of forced Kirchhoff equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (2009), 117-141. |
[3] |
P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. Inst. H. Poincare Anal. Non Linaire, 30 (2013), 33-77.
doi: 10.1016/j.anihpc.2012.06.001. |
[4] |
P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536.
doi: 10.1007/s00208-013-1001-7. |
[5] |
P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear KdV, C. R. Math. Acad. Sci. Paris, 352 (2014), 603-607.
doi: 10.1016/j.crma.2014.04.012. |
[6] |
M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equations, Arch. Ration. Mech. Anal., 212 (2014), 905-955.
doi: 10.1007/s00205-014-0726-0. |
[7] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Analysis, 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[8] |
J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde, Int. Math. Res. Notices, 11 (1994), 45-497.
doi: 10.1155/S1073792894000516. |
[9] |
J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation, Ann. Math., 148 (1998), 363-439.
doi: 10.2307/121001. |
[10] |
J. Bourgain, Green's function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies, 158, Princeton University Press, 2005.
doi: 10.1515/9781400837144. |
[11] |
J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2005), 62-94.
doi: 10.1016/j.jfa.2004.10.019. |
[12] |
L. Chierchia and J. You, KAM tori for 1D nonlinear wave equation with periodic boundary conditions, Commun. Math. Phys., 211 (2000), 497-525.
doi: 10.1007/s002200050824. |
[13] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness results for periodic and non-periodic KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1. |
[14] |
R. Feola and M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, Journal of Differential Equations, 259 (2015), 3389-3447.
doi: 10.1016/j.jde.2015.04.025. |
[15] |
G. Iooss, P. I. Plotnikov and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., 177 (2005), 367-478.
doi: 10.1007/s00205-005-0381-6. |
[16] |
T. Kappler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, Heidelberg, 2003.
doi: 10.1007/978-3-662-08054-2. |
[17] |
T. S. Komatsu and S. I. Sasa, Kink soliton characterizing traffic congestion, Phys. Rev. E, 52 (1995), 5574-5582. |
[18] |
S. B. Kuksin, Hamiltonian perturbation of infinite-dimensional linear system with an imaginary spectrum, Funkt. Anal. Prilozh., 21, 22-37. [English translation in Funct. Anal. Appl., 21 (1987), 192-205.] |
[19] |
S. B. Kuksin, Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR, ser. Mat., 52, 41-63. [English translation in Math. USSR Izv., 32 (1989), 39-62.] |
[20] |
S. B. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Berlin: Springer-Verlag, 1993. |
[21] |
S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.
doi: 10.2307/2118656. |
[22] |
S. B. Kuksin, On small denominators equations with large variable coefficients, J. Appl. Math. Phys. (ZAMP), 48 (1997), 262-271.
doi: 10.1007/PL00001476. |
[23] |
S. B. Kuksin, A KAM theorem for equations of the Korteweg-de Vries type, Rev. Math-Math Phys., 10 (1998), 1-64. |
[24] |
S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000. |
[25] |
J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172.
doi: 10.1002/cpa.20314. |
[26] |
J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673.
doi: 10.1007/s00220-011-1353-3. |
[27] |
J. Liu and X. Yuan, KAM for the derivative nonliear Schrödinger equation with periodic boundary conditions, Journal of Differential equations, 256 (2014), 1627-1652.
doi: 10.1016/j.jde.2013.11.007. |
[28] |
S. Matsutani and H. Tsuru, Reflectionless quantum wire, Journal of the Physical Society of Japan, 60 (1991), 3640-3644.
doi: 10.1143/JPSJ.60.3640. |
[29] |
L. Mi, Quasi-periodic solutions of derivative nonlinear Schrödinger equations with a given potential, Journal of Mathematical Analysis and Applications, 390 (2012), 335-354.
doi: 10.1016/j.jmaa.2012.01.046. |
[30] |
L. Mi and K. Zhang, Invariant tori for Benjamin-Ono equation with unbounded quasi-periodically forced perturbation, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 689-707.
doi: 10.3934/dcds.2014.34.689. |
[31] |
R. M. Miura, Korteweg-de Vries equation and generalizations, I. A remarkable explicit nonlinear transformation, J. Math. Phys., 9 (1968), 1202-1204. |
[32] |
J. Pöschel, A KAM theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisacl. Sci., 23 (1996), 119-148. |
[33] |
J. Pöschel, Quasi-periodic solutions for nonlinear wave equations, Comm. Math. Helv., 71 (1996), 269-296.
doi: 10.1007/BF02566420. |
[34] |
Y. Shi and J. Xu, KAM tori for defocusing modified KDV equation, Journal of Geometry and Physics, 90 (2015), 1-10.
doi: 10.1016/j.geomphys.2014.12.009. |
[35] |
C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equation via KAM theory, Commun. Math. Phys., 127 (1990), 479-528. |
[36] |
D. Yan, KAM tori for generalized Benjamin-Ono equation, Communications on Pure $&$ Applied Analysis, 14 (2015), 941-957.
doi: 10.3934/cpaa.2015.14.941. |
[37] |
X. Yuan and K. Zhang, A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation, J. Math. Phys., 54 (2013), 052701.
doi: 10.1063/1.4803852. |
[38] |
J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228.
doi: 10.1088/0951-7715/24/4/010. |
[39] |
V. Ziegler, J. Dinkel, C. Setzer and K. E. Lonngren, On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line, Chaos, Solitons $&$ Fractals, 12 (2001), 1719-1728. |
[1] |
Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022013 |
[2] |
Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252 |
[3] |
Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467 |
[4] |
Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537 |
[5] |
Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104 |
[6] |
Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585 |
[7] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171 |
[8] |
Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615 |
[9] |
Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101 |
[10] |
Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839 |
[11] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[12] |
Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1495-1533. doi: 10.3934/dcds.2021162 |
[13] |
Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9 |
[14] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[15] |
Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75 |
[16] |
Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623 |
[17] |
Chengming Cao, Xiaoping Yuan. Quasi-periodic solutions for perturbed generalized nonlinear vibrating string equation with singularities. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1867-1901. doi: 10.3934/dcds.2017079 |
[18] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[19] |
Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579 |
[20] |
Koichiro Naito. Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 449-488. doi: 10.3934/dcds.2004.11.449 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]