Citation: |
[1] |
S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schröinger Operators, Math. Notes, vol. 29, Princeton University Press, Princeton, 1982. |
[2] |
K. Akutagawa, H. Kumura, Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds, Calc. Var. Part. Diff. Eq., 48 (2013), 67-88.doi: 10.1007/s00526-012-0542-z. |
[3] |
E. Berchio, D. Ganguly and G. Grillo, Sharp Poincaré-Hardy and Poincaré-Rellich inequalities on the hyperbolic space, Preprint 2015, arXiv:1507.02550v2. |
[4] |
G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants, Trans. Amer. Soc, 356 (2004), 2169-2196.doi: 10.1090/S0002-9947-03-03389-0. |
[5] |
G. Barbatis, S. Filippas and A. Tertikas, Series expansion for $L^p$ Hardy inequalities, Indiana Univ. Math. J., 52 (2003), 171-190.doi: 10.1512/iumj.2003.52.2207. |
[6] |
G. Barbatis and A. Tertikas, On a class of Rellich inequalities, J. Comput. Appl. Math., 194 (2006), 156-172.doi: 10.1016/j.cam.2005.06.020. |
[7] |
B. Bianchini, L. Mari and M. Rigoli, Yamabe type equations with a sign-changing nonlinearity, and the prescribed curvature problem, J. Funct. Anal., 268 (2015), 1-72.doi: 10.1016/j.jfa.2014.10.016. |
[8] |
Y. Bozhkov and E. Mitidieri, Conformal Killing vector fields and Rellich type identities on Riemannian manifolds, I Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 65-80. |
[9] |
Y. Bozhkov and E. Mitidieri, Conformal Killing vector fields and Rellich type identities on Riemannian manifolds II, Mediterr. J. Math., 9 (2012), 1-20. |
[10] |
H. Brezis and M. Marcus, Hardy's inequalities revisited, Ann. Scuola Norm. Sup. Cl. Sci., 25 (1997), 217-237. |
[11] |
H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469. |
[12] |
G. Carron, Inegalites de Hardy sur les varietes Riemanniennes non-compactes, J. Math. Pures Appl., 76 (1997), 883-891.doi: 10.1016/S0021-7824(97)89976-X. |
[13] |
L. D'Ambrosio and S. Dipierro, Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. H. Poinc. Anal. Non Lin., 31 (2014), 449-475.doi: 10.1016/j.anihpc.2013.04.004. |
[14] |
E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in $L^p(\Omega)$, Math. Z., 227 (1998), 511-523.doi: 10.1007/PL00004389. |
[15] |
B. Devyver, M. Fraas and Y. Pinchover, Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon, J. Funct. Anal., 266 (2014), 4422-4489.doi: 10.1016/j.jfa.2014.01.017. |
[16] |
S. Filippas, L. Moschini and A. Tertikas, Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional Laplacian, Arch. Ration. Mech. Anal., 208 (2013), 109-161.doi: 10.1007/s00205-012-0594-4. |
[17] |
S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233.doi: 10.1006/jfan.2001.3900. |
[18] |
S. Filippas, A. Tertikas and J. Tidblom, On the structure of Hardy-Sobolev-Maz'ya inequalities, J. Eur. Math. Soc., 11 (2009), 1165-1185.doi: 10.4171/JEMS/178. |
[19] |
F. Gazzola, H. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc., 356 (2004), 2149-2168.doi: 10.1090/S0002-9947-03-03395-6. |
[20] |
N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57.doi: 10.1007/s00208-010-0510-x. |
[21] |
I. Kombe and M. Ozaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 361 (2009), 6191-6203.doi: 10.1090/S0002-9947-09-04642-X. |
[22] |
I. Kombe and M. Ozaydin, Rellich and uncertainty principle inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 365 (2013), 5035-5050.doi: 10.1090/S0002-9947-2013-05763-7. |
[23] |
D. Karmakar and K. Sandeep, Adams Inequality on the Hyperbolic space, J. Funct. Anal., 270 (2016), 1792-1817.doi: 10.1016/j.jfa.2015.11.019. |
[24] |
P. Li and J. Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup., 39 (2006), 921-982.doi: 10.1016/j.ansens.2006.11.001. |
[25] |
V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985.doi: 10.1007/978-3-662-09922-3. |
[26] |
G. Mancini and K. Sandeep, On a semilinear equation in $\mathbbH^n$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 vol.VII (2008), 635-671. |
[27] |
M. Marcus, V. J. Mizel and Y. Pinchover, On the best constant for Hardy's inequality in $\mathbb R^n$, Trans. Am. Math. Soc., 350 (1998), 3237-3255.doi: 10.1090/S0002-9947-98-02122-9. |
[28] |
G. Metafune, M. Sobajima and C. Spina, Weighted Calderón-ygmund and Rellich inequalities in $L^p$, Math. Ann., 361 (2015), 313-366.doi: 10.1007/s00208-014-1075-x. |
[29] |
E. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki, 67 (2000), 563-572.doi: 10.1007/BF02676404. |
[30] |
F. Rellich, Halbbeschrkte differential operatoren herer Ordnung, Proceedings of the International Congress of Mathematicians III (1954), 243-250. |
[31] |
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 32, Princeton (1971). |
[32] |
A. Tertikas and N. B. Zographopoulos, Best constants in the Hardy-Rellich inequalities and related improvements, Adv. Math., 209 (2007), 407-459.doi: 10.1016/j.aim.2006.05.011. |
[33] |
Q. Yang, D. Su and Y. Kong, Hardy inequalities on Riemannian manifolds with negative curvature, Commun. Contemp. Math., 16 (2014), 1350043.doi: 10.1142/S0219199713500430. |
[34] |
J. L. Vazquez, Fundamental solution and long time behaviour of the Porous medium equation in hyperbolic space, J. Math. Pures Appl., 104 (2015), 454-484.doi: 10.1016/j.matpur.2015.03.005. |
[35] |
J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.doi: 10.1006/jfan.1999.3556. |