- Previous Article
- CPAA Home
- This Issue
-
Next Article
Distributionally chaotic families of operators on Fréchet spaces
The Hele-Shaw problem with surface tension in the case of subdiffusion
1. | Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Dobrovolskogo, 1, Slov'iansk, 84100, Ukraine, Ukraine |
References:
[1] |
C. Atkinson, Moving boundary problems for time fractional and composition dependent diffusion, Frac. Calcul. and Appl. Analysis, 15 (2012), 207-221.
doi: 10.2478/s13540-012-0015-2. |
[2] |
B. V. Bazaliy, Stefan problem for the Laplace equation with regard for the curvature of the free boundary, Ukr. Math. J., 40 (1997), 1465-1484. |
[3] |
B. V. Bazaliy and A. Friedman, The Hele-Shaw problem with surface tension in a half-plane: a model problem, J. Diff. Equs., 216 (2005), 387-438.
doi: 10.1016/j.jde.2005.03.007. |
[4] |
B. V. Bazaliy and A. Friedman, The Hele-Shaw problem with surface tension in a half-plane, J. Diff. Equs., 216 (2005), 439-469.
doi: 10.1016/j.jde.2005.03.017. |
[5] |
B. V. Bazaliy and N. Vasylyeva, The two-phase Hele-Shaw problem with a nonregular initial interface and without surface tension, J. Math. Phys., Anal., Geom., 10 (2014), 3-43. |
[6] |
J.-P. Bouchard and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N. |
[7] |
A. Cartea and D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A, 374 (2007), 749-763. |
[8] |
X. Chen, The Hele-Shaw problem and area preserving curve shortening motions, Arch. Rat. Mech. Anal., 123 (1993), 117-151.
doi: 10.1007/BF00695274. |
[9] |
S. Chen, B. Merriman, S. Osher and P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys., 135 (1997), 8-29.
doi: 10.1006/jcph.1997.5721. |
[10] |
X. Chen and F. Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic indercooling, J. Math. Anal. Appl., 164 (1992), 350-362.
doi: 10.1016/0022-247X(92)90119-X. |
[11] |
K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22.
doi: 10.1023/A:1016592219341. |
[12] |
G. Drazer and D. H. Zanette, Experimental evidence of power-law trapping-time distributions in porous media, Phys. Rev. E, 60 (1999), 5858-5864. |
[13] |
A. Erdélyi, Higher Transcendental Functions v.3, Mc Graw-Hill, New York, 1955. |
[14] |
J. Escher and G. Simonett, Classical solutions multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 (1997), 1028-1047.
doi: 10.1137/S0036141095291919. |
[15] |
A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Bio., 38 (1999), 262-284.
doi: 10.1007/s002850050149. |
[16] |
D. Gilbarg and D. Ttrudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag Berlin Heidelberg, 1989. |
[17] |
E. I. Hanzava, Classical solution of the Stefan problem, Tohoku Math. J., 33 (1981), 297-335. |
[18] |
H. S. Hele-Shaw, The flow of water, Nature, 58 (1898), 34-36. |
[19] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, 2000.
doi: 10.1142/9789812817747. |
[20] |
S. D. Howison, Bibliography of free an moving boundary problems in Hele-Shaw and Stokes flow, http://www.maths.ox.ac.uk/howison/Hele-Shaw, (2006). |
[21] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. |
[22] |
A. N. Kochubei, Fractional-parabolic systems, Potential Analysis, 37 (2012), 1-30.
doi: 10.1007/s11118-011-9243-z. |
[23] |
M. Krasnoschok and N. Vasylyeva, Existence and uniqueness of the solutions for some initial-boundary value problems with the fractional dynamic boundary condition, Inter. J. PDE, 2013 (2013), Article ID 796430, 20p. |
[24] |
O. A. Ladyzhenskaia, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Parabolic Equations, Academic Press, New York, 1968. |
[25] |
O. A. Ladyzhenskaia and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. |
[26] |
T. A. M. Langlands and B. I. Henry, Fractional chemotaxis diffusion equation, Physical Review E, 81 (2010), 051102.
doi: 10.1103/PhysRevE.81.051102. |
[27] |
B.-T. Liu and J.-P. Hsu, Theoretical analysis on diffusional release from ellipsoidal drug delivery devices, Chem. Eng. Sci., 61 (2006), 1748-1752. |
[28] |
J. Y. Liu and M. Xu, An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices, Z. Angew. Math. Mech., 84 (2004), 22-28.
doi: 10.1002/zamm.200410074. |
[29] |
J. Y. Liu and M. Xu, Some exact solutions to Stefan problems with fractional differential equations, J. Math. Anal. Appl., 351 (2009), 536-542.
doi: 10.1016/j.jmaa.2008.10.042. |
[30] |
A. Logg, K. A. Mardal and G. Wells eds., Automated Solution of Differential Equations by the Finite Element Method: The Fenics Book, 84, Springer, 2012.
doi: 10.1007/978-3-642-23099-8. |
[31] |
A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications 16, Basel: Birkhäuser Verlag, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[32] |
F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics (A. Garpinteri and F. Mainardi Eds.), Springer-Verlag, New York, (1997), 291-348.
doi: 10.1007/978-3-7091-2664-6_7. |
[33] |
G. Prokert, Existence results for Hele-Shaw problem driven by surface tension, European J. Appl. Math., 9 (1998), 195-221.
doi: 10.1017/S0956792597003276. |
[34] |
A. V. Pskhu, Partial Differential Equations of the Fractional Order, Nauka, Moscow, 2005 (in Russian). |
[35] |
A. V. Pskhu, The fundamental solution of a diffusion-wave equation of fractional order, Izvestia RAN, 73 (2009), 141-182 (in Russian).
doi: 10.1070/IM2009v073n02ABEH002450. |
[36] |
S. Z. Rida, A. M. A. El-Sayed and A. A. M. Arafa, Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model, J. Statistical Physics, 140 (2010), 797-811.
doi: 10.1007/s10955-010-0007-8. |
[37] |
W. Tan, C. Fu, C. Fu, W. Xie and H. Cheng, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. Phys. Letter, 91 (2007), 183901. |
[38] |
V. R. Voller, An exact solution of a limit case Stefan problem governed by a fractional diffusion equation, Internat. J. Heat and Mass Transf., 53 (2010), 5622-5625. |
[39] |
V. R. Voller, F. Falcini and R. Garra, Fractional Stefan problems exibiting lumped and distributed latent-heat memory effects, Phys. Rew. E, 87 (2013), 042401. |
[40] |
V. R. Voller, An overview of numerical methods for solving phase change problems, in Advances in Numerical Heat Transfer (W. J. Minkowycz and E. M. Sparrow Eds.), Taylor & Francis Washington, DC, 1 (1996), 341-375. |
[41] |
N. Vasylyeva and L. Vynnytska, On a multidimensional moving boundary problem governed by anomalous diffusion: analytical and numerical study, Nonlinear Differ. Equ. Appl., 22 (2015), 543-577.
doi: 10.1007/s00030-014-0295-9. |
[42] |
N. Vasylyeva, Local solvability of a linear system with a fractional derivative in time in a boundary condition, Frac. Calc. Appl. Anal., 18 (2015), 982-1005.
doi: 10.1515/fca-2015-0058. |
[43] |
N. Vasylyeva, On a local solvability of the multidimensional Muscat problem with a fractional derivative in time on the boundary condition, J. Frac. Differ. Calc., 4 (2014), 80-124.
doi: 10.7153/fdc-04-06. |
show all references
References:
[1] |
C. Atkinson, Moving boundary problems for time fractional and composition dependent diffusion, Frac. Calcul. and Appl. Analysis, 15 (2012), 207-221.
doi: 10.2478/s13540-012-0015-2. |
[2] |
B. V. Bazaliy, Stefan problem for the Laplace equation with regard for the curvature of the free boundary, Ukr. Math. J., 40 (1997), 1465-1484. |
[3] |
B. V. Bazaliy and A. Friedman, The Hele-Shaw problem with surface tension in a half-plane: a model problem, J. Diff. Equs., 216 (2005), 387-438.
doi: 10.1016/j.jde.2005.03.007. |
[4] |
B. V. Bazaliy and A. Friedman, The Hele-Shaw problem with surface tension in a half-plane, J. Diff. Equs., 216 (2005), 439-469.
doi: 10.1016/j.jde.2005.03.017. |
[5] |
B. V. Bazaliy and N. Vasylyeva, The two-phase Hele-Shaw problem with a nonregular initial interface and without surface tension, J. Math. Phys., Anal., Geom., 10 (2014), 3-43. |
[6] |
J.-P. Bouchard and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N. |
[7] |
A. Cartea and D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A, 374 (2007), 749-763. |
[8] |
X. Chen, The Hele-Shaw problem and area preserving curve shortening motions, Arch. Rat. Mech. Anal., 123 (1993), 117-151.
doi: 10.1007/BF00695274. |
[9] |
S. Chen, B. Merriman, S. Osher and P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys., 135 (1997), 8-29.
doi: 10.1006/jcph.1997.5721. |
[10] |
X. Chen and F. Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic indercooling, J. Math. Anal. Appl., 164 (1992), 350-362.
doi: 10.1016/0022-247X(92)90119-X. |
[11] |
K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22.
doi: 10.1023/A:1016592219341. |
[12] |
G. Drazer and D. H. Zanette, Experimental evidence of power-law trapping-time distributions in porous media, Phys. Rev. E, 60 (1999), 5858-5864. |
[13] |
A. Erdélyi, Higher Transcendental Functions v.3, Mc Graw-Hill, New York, 1955. |
[14] |
J. Escher and G. Simonett, Classical solutions multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 (1997), 1028-1047.
doi: 10.1137/S0036141095291919. |
[15] |
A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Bio., 38 (1999), 262-284.
doi: 10.1007/s002850050149. |
[16] |
D. Gilbarg and D. Ttrudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag Berlin Heidelberg, 1989. |
[17] |
E. I. Hanzava, Classical solution of the Stefan problem, Tohoku Math. J., 33 (1981), 297-335. |
[18] |
H. S. Hele-Shaw, The flow of water, Nature, 58 (1898), 34-36. |
[19] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, 2000.
doi: 10.1142/9789812817747. |
[20] |
S. D. Howison, Bibliography of free an moving boundary problems in Hele-Shaw and Stokes flow, http://www.maths.ox.ac.uk/howison/Hele-Shaw, (2006). |
[21] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. |
[22] |
A. N. Kochubei, Fractional-parabolic systems, Potential Analysis, 37 (2012), 1-30.
doi: 10.1007/s11118-011-9243-z. |
[23] |
M. Krasnoschok and N. Vasylyeva, Existence and uniqueness of the solutions for some initial-boundary value problems with the fractional dynamic boundary condition, Inter. J. PDE, 2013 (2013), Article ID 796430, 20p. |
[24] |
O. A. Ladyzhenskaia, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Parabolic Equations, Academic Press, New York, 1968. |
[25] |
O. A. Ladyzhenskaia and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. |
[26] |
T. A. M. Langlands and B. I. Henry, Fractional chemotaxis diffusion equation, Physical Review E, 81 (2010), 051102.
doi: 10.1103/PhysRevE.81.051102. |
[27] |
B.-T. Liu and J.-P. Hsu, Theoretical analysis on diffusional release from ellipsoidal drug delivery devices, Chem. Eng. Sci., 61 (2006), 1748-1752. |
[28] |
J. Y. Liu and M. Xu, An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices, Z. Angew. Math. Mech., 84 (2004), 22-28.
doi: 10.1002/zamm.200410074. |
[29] |
J. Y. Liu and M. Xu, Some exact solutions to Stefan problems with fractional differential equations, J. Math. Anal. Appl., 351 (2009), 536-542.
doi: 10.1016/j.jmaa.2008.10.042. |
[30] |
A. Logg, K. A. Mardal and G. Wells eds., Automated Solution of Differential Equations by the Finite Element Method: The Fenics Book, 84, Springer, 2012.
doi: 10.1007/978-3-642-23099-8. |
[31] |
A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications 16, Basel: Birkhäuser Verlag, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[32] |
F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics (A. Garpinteri and F. Mainardi Eds.), Springer-Verlag, New York, (1997), 291-348.
doi: 10.1007/978-3-7091-2664-6_7. |
[33] |
G. Prokert, Existence results for Hele-Shaw problem driven by surface tension, European J. Appl. Math., 9 (1998), 195-221.
doi: 10.1017/S0956792597003276. |
[34] |
A. V. Pskhu, Partial Differential Equations of the Fractional Order, Nauka, Moscow, 2005 (in Russian). |
[35] |
A. V. Pskhu, The fundamental solution of a diffusion-wave equation of fractional order, Izvestia RAN, 73 (2009), 141-182 (in Russian).
doi: 10.1070/IM2009v073n02ABEH002450. |
[36] |
S. Z. Rida, A. M. A. El-Sayed and A. A. M. Arafa, Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model, J. Statistical Physics, 140 (2010), 797-811.
doi: 10.1007/s10955-010-0007-8. |
[37] |
W. Tan, C. Fu, C. Fu, W. Xie and H. Cheng, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. Phys. Letter, 91 (2007), 183901. |
[38] |
V. R. Voller, An exact solution of a limit case Stefan problem governed by a fractional diffusion equation, Internat. J. Heat and Mass Transf., 53 (2010), 5622-5625. |
[39] |
V. R. Voller, F. Falcini and R. Garra, Fractional Stefan problems exibiting lumped and distributed latent-heat memory effects, Phys. Rew. E, 87 (2013), 042401. |
[40] |
V. R. Voller, An overview of numerical methods for solving phase change problems, in Advances in Numerical Heat Transfer (W. J. Minkowycz and E. M. Sparrow Eds.), Taylor & Francis Washington, DC, 1 (1996), 341-375. |
[41] |
N. Vasylyeva and L. Vynnytska, On a multidimensional moving boundary problem governed by anomalous diffusion: analytical and numerical study, Nonlinear Differ. Equ. Appl., 22 (2015), 543-577.
doi: 10.1007/s00030-014-0295-9. |
[42] |
N. Vasylyeva, Local solvability of a linear system with a fractional derivative in time in a boundary condition, Frac. Calc. Appl. Anal., 18 (2015), 982-1005.
doi: 10.1515/fca-2015-0058. |
[43] |
N. Vasylyeva, On a local solvability of the multidimensional Muscat problem with a fractional derivative in time on the boundary condition, J. Frac. Differ. Calc., 4 (2014), 80-124.
doi: 10.7153/fdc-04-06. |
[1] |
Dinh-Ke Tran, Tran-Phuong-Thuy Lam. Nonlocal final value problem governed by semilinear anomalous diffusion equations. Evolution Equations and Control Theory, 2020, 9 (3) : 891-914. doi: 10.3934/eect.2020038 |
[2] |
Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021026 |
[3] |
Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030 |
[4] |
Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022014 |
[5] |
Dorina Mitrea, Irina Mitrea, Marius Mitrea, Lixin Yan. Coercive energy estimates for differential forms in semi-convex domains. Communications on Pure and Applied Analysis, 2010, 9 (4) : 987-1010. doi: 10.3934/cpaa.2010.9.987 |
[6] |
Yuanwei Qi. Anomalous exponents and RG for nonlinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 738-745. doi: 10.3934/proc.2005.2005.738 |
[7] |
Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations and Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173 |
[8] |
Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281 |
[9] |
Lincoln Chayes, Inwon C. Kim. The supercooled Stefan problem in one dimension. Communications on Pure and Applied Analysis, 2012, 11 (2) : 845-859. doi: 10.3934/cpaa.2012.11.845 |
[10] |
Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741 |
[11] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 |
[12] |
M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429 |
[13] |
Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379 |
[14] |
Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure and Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591 |
[15] |
Karl P. Hadeler. Stefan problem, traveling fronts, and epidemic spread. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 417-436. doi: 10.3934/dcdsb.2016.21.417 |
[16] |
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 |
[17] |
Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317 |
[18] |
Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033 |
[19] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 |
[20] |
Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]