November  2016, 15(6): 1975-2005. doi: 10.3934/cpaa.2016024

Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities

1. 

Instituto de Investigaciones Matemáticas Luis Santaló and CONICET, Facultad de Ciencias Exactas y Naturales, Pabellón I, Ciudad Universitaria, 1428, Argentina

Received  November 2012 Revised  May 2013 Published  September 2016

In this paper we analyze the following elliptic problem related to some Caffarelli-Kohn-Nirenberg inequalities: \begin{eqnarray} -div(|x|^{-2\gamma}\nabla u)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|\nabla u|^p|x|^{-\gamma p}+cf,\; u>0\; \mbox{ in }\; \Omega, \qquad u_{|\partial \Omega}\equiv0, \end{eqnarray} where $\Omega \subset R^N$ is a domain such that $0\in\Omega$, $N\geq 3$, and $c, \lambda, \gamma, p $ are positive constants verifying $0 < \lambda \leq \Lambda_{N,\gamma}=\left(\frac{N-2(\gamma+1)}{2}\right)^{2}$, $-\infty<\gamma<\frac{N-2} 2$ and $p>0$. Our study concerns to existence of solutions to the former problem. More precisely, first we determine a critical thereshold for the power $p$, in the sense that, beyond this value it does not exist any positive supersolution to our problem, not even in a very weak sense. In addition, we show existence of solutions for all the values $p>0$ below this threshold, with the restriction $\gamma>-\frac{N(1-p)+2}{2}$, whenever the righthand side verifies $f(x)\leq |x|^{-2(\gamma+1)}$ if $\gamma>-1$. When $-\frac{N(1-p)+2}{2}<\gamma\leq -1$ it suffices that $f\in L^{2/p}(\Omega)$. The existence of solutions for $0 < p < 1$ and $\gamma\leq -\frac{N(1-p)+2}{2}$ is an open question.
Citation: Mayte Pérez-Llanos. Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 1975-2005. doi: 10.3934/cpaa.2016024
References:
[1]

Calc. Var. Partial Differential Equations, 23 (2005), 327-345. doi: 10.1007/s00526-004-0303-8.  Google Scholar

[2]

Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1-24. doi: 10.1017/S0308210500001505.  Google Scholar

[3]

Commun. Pure Appl. Anal., 2 (2003), 539-566. doi: 10.3934/cpaa.2003.2.539.  Google Scholar

[4]

Ann. Mat. Pura Appl., 2 (2003), 247-270. doi: 10.1007/s10231-002-0064-y.  Google Scholar

[5]

Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 159-183.  Google Scholar

[6]

SIAM J. Math. Anal., 24 (1993), 23-35. doi: 10.1137/0524002.  Google Scholar

[7]

Nonlinear Anal., 32 (1998), 819-830. doi: 10.1016/S0362-546X(97)00530-0.  Google Scholar

[8]

Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 213-235.  Google Scholar

[9]

Discrete Contin. Dyn. Syst., 16 (2006), 513-523. doi: 10.3934/dcds.2006.16.513.  Google Scholar

[10]

Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 1 (1998), 223-262.  Google Scholar

[11]

Selecta Math. (N.S.), 11 (2005), 1-7. doi: 10.1007/s00029-005-0003-z.  Google Scholar

[12]

C. R. Math. Acad. Sci. Paris, 338 (2004), 599-604. doi: 10.1016/j.crma.2003.12.032.  Google Scholar

[13]

Compositio Math., 53 (1984), 259-275.  Google Scholar

[14]

Comm. Pure Appl. Math., 54 (2001), 229-258. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[15]

Oxford University Press, New York, 1993.  Google Scholar

[16]

Israel J. Math., 13 (1972), 135-148.  Google Scholar

[17]

John Wiley and Sons, Inc., New York, 1985.  Google Scholar

[18]

Mathematical Surveys and Monographs, 51 American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/051.  Google Scholar

[19]

Notes of the course at Alexandria, Ecole Cimpa, 2009. Google Scholar

[20]

Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.  Google Scholar

[21]

C. A. Swanson, Remarks on Picone's identity and related identities,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia}, 11 (): 3.   Google Scholar

show all references

References:
[1]

Calc. Var. Partial Differential Equations, 23 (2005), 327-345. doi: 10.1007/s00526-004-0303-8.  Google Scholar

[2]

Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1-24. doi: 10.1017/S0308210500001505.  Google Scholar

[3]

Commun. Pure Appl. Anal., 2 (2003), 539-566. doi: 10.3934/cpaa.2003.2.539.  Google Scholar

[4]

Ann. Mat. Pura Appl., 2 (2003), 247-270. doi: 10.1007/s10231-002-0064-y.  Google Scholar

[5]

Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 159-183.  Google Scholar

[6]

SIAM J. Math. Anal., 24 (1993), 23-35. doi: 10.1137/0524002.  Google Scholar

[7]

Nonlinear Anal., 32 (1998), 819-830. doi: 10.1016/S0362-546X(97)00530-0.  Google Scholar

[8]

Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 213-235.  Google Scholar

[9]

Discrete Contin. Dyn. Syst., 16 (2006), 513-523. doi: 10.3934/dcds.2006.16.513.  Google Scholar

[10]

Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 1 (1998), 223-262.  Google Scholar

[11]

Selecta Math. (N.S.), 11 (2005), 1-7. doi: 10.1007/s00029-005-0003-z.  Google Scholar

[12]

C. R. Math. Acad. Sci. Paris, 338 (2004), 599-604. doi: 10.1016/j.crma.2003.12.032.  Google Scholar

[13]

Compositio Math., 53 (1984), 259-275.  Google Scholar

[14]

Comm. Pure Appl. Math., 54 (2001), 229-258. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[15]

Oxford University Press, New York, 1993.  Google Scholar

[16]

Israel J. Math., 13 (1972), 135-148.  Google Scholar

[17]

John Wiley and Sons, Inc., New York, 1985.  Google Scholar

[18]

Mathematical Surveys and Monographs, 51 American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/051.  Google Scholar

[19]

Notes of the course at Alexandria, Ecole Cimpa, 2009. Google Scholar

[20]

Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.  Google Scholar

[21]

C. A. Swanson, Remarks on Picone's identity and related identities,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia}, 11 (): 3.   Google Scholar

[1]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[2]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[3]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[4]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[5]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[6]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[7]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[8]

Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003

[9]

Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021, 3 (1) : 1-26. doi: 10.3934/fods.2021002

[10]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[11]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[12]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[13]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[14]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

[15]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[16]

Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016

[17]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[18]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[19]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[20]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]