November  2016, 15(6): 2059-2074. doi: 10.3934/cpaa.2016027

On the Hardy-Littlewood-Sobolev type systems

1. 

Department of Applied Mathematics, University of Colorado at Boulder, Colorado

2. 

Department of Mathematics, INS and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China

3. 

Department of Applied Mathematics, University of Colorado at Boulder

Received  October 2015 Revised  June 2016 Published  September 2016

In this paper, we study some qualitative properties of Hardy-Littlewood-Sobolev type systems. The HLS type systems are categorized into three cases: critical, supercritical and subcritical. The critical case, the well known original HLS system, corresponds to the Euler-Lagrange equations of the fundamental HLS inequality. In each case, we give a brief survey on some important results and useful methods. Some simplifications and extensions based on somewhat more direct and intuitive ideas are presented. Also, a few new qualitative properties are obtained and several open problems are raised for future research.
Citation: Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027
References:
[1]

Disc. & Cont. Dynamics Sys., 34 (2014), 3317-3339. doi: 10.3934/dcds.2014.34.3317.  Google Scholar

[2]

Indiana University Mathematics Journal, 30 (1981), 141-157. doi: 10.1512/iumj.1981.30.30012.  Google Scholar

[3]

Comm. Pure Appl. Math., 142 (1989), 615-622. doi: 10.1002/cpa.3160420304.  Google Scholar

[4]

Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[5]

Commun. in Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar

[6]

Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar

[7]

Z. Cheng, G. Huang and C. Li, A Liouville theorem for subcritical Lane-Emden system,, \arXiv{1412.7275}., ().   Google Scholar

[8]

Nonlinear Analysis: Theory, Methods and Applications, 114 (2015), 2-12. doi: 10.1016/j.na.2014.10.019.  Google Scholar

[9]

Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies, 7A (1981), 369-402.  Google Scholar

[10]

Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277.  Google Scholar

[11]

Calc. Var. of Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.  Google Scholar

[12]

Comm. in Partial Differential Equation, 41 (2016), 1029-1039. doi: 10.1080/03605302.2016.1190376.  Google Scholar

[13]

Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.  Google Scholar

[14]

Journal of Partial Differential Equations, 19 (2006), 256.  Google Scholar

[15]

Quaderno Matematico, (1982), 285.  Google Scholar

[16]

Communications in partial differential equations, 18 (1993), 125-151. doi: 10.1080/03605309308820923.  Google Scholar

[17]

Differ. Integral Equations, 9 (1996), 465-479.  Google Scholar

[18]

Soviet Math. Doklady, 6 (1965), 1408-1411.  Google Scholar

[19]

Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[20]

Indiana Univ. J. Math., 35 (1986), 681-703. doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[21]

Springer, 2007.  Google Scholar

[22]

Arch. Rat. Mech. Anal., 43 (1971), 304-318.  Google Scholar

[23]

Differ. Integral Equations, 9 (1996), 635-654.  Google Scholar

[24]

Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380.  Google Scholar

[25]

Advances in Mathematics, 221 (2009), 1409-1427. doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[26]

Math. Ann., (1999), 207-228. doi: 10.1007/s002080050258.  Google Scholar

show all references

References:
[1]

Disc. & Cont. Dynamics Sys., 34 (2014), 3317-3339. doi: 10.3934/dcds.2014.34.3317.  Google Scholar

[2]

Indiana University Mathematics Journal, 30 (1981), 141-157. doi: 10.1512/iumj.1981.30.30012.  Google Scholar

[3]

Comm. Pure Appl. Math., 142 (1989), 615-622. doi: 10.1002/cpa.3160420304.  Google Scholar

[4]

Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[5]

Commun. in Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar

[6]

Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar

[7]

Z. Cheng, G. Huang and C. Li, A Liouville theorem for subcritical Lane-Emden system,, \arXiv{1412.7275}., ().   Google Scholar

[8]

Nonlinear Analysis: Theory, Methods and Applications, 114 (2015), 2-12. doi: 10.1016/j.na.2014.10.019.  Google Scholar

[9]

Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies, 7A (1981), 369-402.  Google Scholar

[10]

Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277.  Google Scholar

[11]

Calc. Var. of Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.  Google Scholar

[12]

Comm. in Partial Differential Equation, 41 (2016), 1029-1039. doi: 10.1080/03605302.2016.1190376.  Google Scholar

[13]

Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.  Google Scholar

[14]

Journal of Partial Differential Equations, 19 (2006), 256.  Google Scholar

[15]

Quaderno Matematico, (1982), 285.  Google Scholar

[16]

Communications in partial differential equations, 18 (1993), 125-151. doi: 10.1080/03605309308820923.  Google Scholar

[17]

Differ. Integral Equations, 9 (1996), 465-479.  Google Scholar

[18]

Soviet Math. Doklady, 6 (1965), 1408-1411.  Google Scholar

[19]

Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[20]

Indiana Univ. J. Math., 35 (1986), 681-703. doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[21]

Springer, 2007.  Google Scholar

[22]

Arch. Rat. Mech. Anal., 43 (1971), 304-318.  Google Scholar

[23]

Differ. Integral Equations, 9 (1996), 635-654.  Google Scholar

[24]

Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380.  Google Scholar

[25]

Advances in Mathematics, 221 (2009), 1409-1427. doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[26]

Math. Ann., (1999), 207-228. doi: 10.1007/s002080050258.  Google Scholar

[1]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[2]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[5]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[6]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[7]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[8]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[9]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[10]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[11]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[12]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[13]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[14]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[15]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[16]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[17]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[18]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[19]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[20]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]