-
Previous Article
Robust control of a Cahn-Hilliard-Navier-Stokes model
- CPAA Home
- This Issue
-
Next Article
Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data
On the Hardy-Littlewood-Sobolev type systems
1. | Department of Applied Mathematics, University of Colorado at Boulder, Colorado |
2. | Department of Mathematics, INS and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China |
3. | Department of Applied Mathematics, University of Colorado at Boulder |
References:
[1] |
Disc. & Cont. Dynamics Sys., 34 (2014), 3317-3339.
doi: 10.3934/dcds.2014.34.3317. |
[2] |
Indiana University Mathematics Journal, 30 (1981), 141-157.
doi: 10.1512/iumj.1981.30.30012. |
[3] |
Comm. Pure Appl. Math., 142 (1989), 615-622.
doi: 10.1002/cpa.3160420304. |
[4] |
Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[5] |
Commun. in Partial Differential Equations, 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[6] |
Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[7] |
Z. Cheng, G. Huang and C. Li, A Liouville theorem for subcritical Lane-Emden system,, \arXiv{1412.7275}., (). Google Scholar |
[8] |
Nonlinear Analysis: Theory, Methods and Applications, 114 (2015), 2-12.
doi: 10.1016/j.na.2014.10.019. |
[9] |
Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies, 7A (1981), 369-402. |
[10] |
Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.
doi: 10.3934/dcds.2016.36.3277. |
[11] |
Calc. Var. of Partial Differential Equations, 45 (2012), 43-61.
doi: 10.1007/s00526-011-0450-7. |
[12] |
Comm. in Partial Differential Equation, 41 (2016), 1029-1039.
doi: 10.1080/03605302.2016.1190376. |
[13] |
Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[14] |
Journal of Partial Differential Equations, 19 (2006), 256. |
[15] |
Quaderno Matematico, (1982), 285. |
[16] |
Communications in partial differential equations, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[17] |
Differ. Integral Equations, 9 (1996), 465-479. |
[18] |
Soviet Math. Doklady, 6 (1965), 1408-1411. |
[19] |
Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[20] |
Indiana Univ. J. Math., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036. |
[21] |
Springer, 2007. |
[22] |
Arch. Rat. Mech. Anal., 43 (1971), 304-318. |
[23] |
Differ. Integral Equations, 9 (1996), 635-654. |
[24] |
Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380. |
[25] |
Advances in Mathematics, 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[26] |
Math. Ann., (1999), 207-228.
doi: 10.1007/s002080050258. |
show all references
References:
[1] |
Disc. & Cont. Dynamics Sys., 34 (2014), 3317-3339.
doi: 10.3934/dcds.2014.34.3317. |
[2] |
Indiana University Mathematics Journal, 30 (1981), 141-157.
doi: 10.1512/iumj.1981.30.30012. |
[3] |
Comm. Pure Appl. Math., 142 (1989), 615-622.
doi: 10.1002/cpa.3160420304. |
[4] |
Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[5] |
Commun. in Partial Differential Equations, 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[6] |
Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[7] |
Z. Cheng, G. Huang and C. Li, A Liouville theorem for subcritical Lane-Emden system,, \arXiv{1412.7275}., (). Google Scholar |
[8] |
Nonlinear Analysis: Theory, Methods and Applications, 114 (2015), 2-12.
doi: 10.1016/j.na.2014.10.019. |
[9] |
Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies, 7A (1981), 369-402. |
[10] |
Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.
doi: 10.3934/dcds.2016.36.3277. |
[11] |
Calc. Var. of Partial Differential Equations, 45 (2012), 43-61.
doi: 10.1007/s00526-011-0450-7. |
[12] |
Comm. in Partial Differential Equation, 41 (2016), 1029-1039.
doi: 10.1080/03605302.2016.1190376. |
[13] |
Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[14] |
Journal of Partial Differential Equations, 19 (2006), 256. |
[15] |
Quaderno Matematico, (1982), 285. |
[16] |
Communications in partial differential equations, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[17] |
Differ. Integral Equations, 9 (1996), 465-479. |
[18] |
Soviet Math. Doklady, 6 (1965), 1408-1411. |
[19] |
Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[20] |
Indiana Univ. J. Math., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036. |
[21] |
Springer, 2007. |
[22] |
Arch. Rat. Mech. Anal., 43 (1971), 304-318. |
[23] |
Differ. Integral Equations, 9 (1996), 635-654. |
[24] |
Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380. |
[25] |
Advances in Mathematics, 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[26] |
Math. Ann., (1999), 207-228.
doi: 10.1007/s002080050258. |
[1] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022 |
[2] |
Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069 |
[3] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[4] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[5] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[6] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[7] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[8] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[9] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[10] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[11] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[12] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[13] |
Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035 |
[14] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[15] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[16] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[17] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[18] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[19] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[20] |
Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]