-
Previous Article
Sharp well-posedness for the Chen-Lee equation
- CPAA Home
- This Issue
-
Next Article
Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates
Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type
1. | School of Mathematics and Statistics, Hunan University of Commerce, Changsha, 410205 Hunan, China |
2. | School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083 |
3. | School of Mathematics and Statistics, Qujing Normal University, Qujing, 655011 Yunnan, China |
References:
[1] |
C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains,, \emph{Z. Angew. Math. Phys.}, 65 (2014), 1153.
doi: 10.1007/s00033-013-0376-3. |
[2] |
J. M. Ball, Initial-boundary value for an extensible beam,, \emph{J. Math. Anal. Appl.}, 42 (1973), 61.
|
[3] |
H. M. Berger, A new approach to the analysis of large deflections of plates,, \emph{J. Appl. Mech.}, 22 (1955), 465.
|
[4] |
T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^N$,, \emph{Commun. Partial Differ. Equ.}, 20 (1995), 1725.
doi: 10.1080/03605309508821149. |
[5] |
T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology,, \emph{Ann. I. H. Poincar\'e Anal, 22 (2005), 259.
doi: 10.1016/j.anihpc.2004.07.005. |
[6] |
T. Bartch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems,, \emph{J. Anal. Math.}, 96 (2005), 1.
doi: 10.1007/BF02787822. |
[7] |
T. Bartsch, Z. Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations,, in \emph{Handbook of Differential Equations-Stationary Partial Differential Equations} (M. Chipot and P. Quittner eds.), (2005), 1.
doi: 10.1016/S1874-5733(05)80009-9. |
[8] |
B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems,, \emph{Nonlinear Anal.}, 71 (2009), 4883.
doi: 10.1016/j.na.2009.03.065. |
[9] |
B. T. Cheng, X. Wu and J. Liu, Multiple solutions for a class of Kirchhoff-type problems with concave nonlinearity,, \emph{NoDEA Nonl. Diff. Equa. Appl.}, 19 (2012), 521.
doi: 10.1007/s00030-011-0141-2. |
[10] |
B. T. Cheng and X. H. Tang, Infinitely many large energy solutions for Schrödinger-Kirchhoff type problem in $\mathbbR^N$,, \emph{J. Nonlinear Sci. Appl.}, 9 (2016), 652.
|
[11] |
X. J. Chang and Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian,, \emph{J. Differential Equations}, 256 (2014), 2965.
doi: 10.1016/j.jde.2014.01.027. |
[12] |
E. N. Dancer and Y. H. Du, On sign-changing solutions of certain semilinear elliptic problems,, \emph{Appl. Anal.}, 56 (1995), 193.
doi: 10.1080/00036819508840321. |
[13] |
Y. X. Guo and J. J. Nie, Existence and multiplicity of nontrivial solutions for p-Laplacian Schrödinger-Kirchhoff-type equations,, \emph{J. Math. Anal. Appl.}, 428 (2015), 1054.
doi: 10.1016/j.jmaa.2015.03.064. |
[14] |
X. M. He and W. M. Zou, Existen and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbbR^{3}$,, \emph{J. Differential Equations}, 2 (2012), 1813.
doi: 10.1016/j.jde.2011.08.035. |
[15] |
J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 369 (2010), 564.
doi: 10.1016/j.jmaa.2010.03.059. |
[16] |
Z. L. Liu and J. X. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations,, \emph{J. Differential Equations}, 172 (2001), 257.
doi: 10.1006/jdeq.2000.3867. |
[17] |
J. Liu, S. X. Chen and X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 395 (2012), 608.
doi: 10.1016/j.jmaa.2012.05.063. |
[18] |
H. L. Liu and H. B. Chen, Haibo Least energy nodal solution for quasilinear biharmonic equations with critical exponent in $\mathbbR^N$,, \emph{Appl. Math. Lett.}, 48 (2015), 85.
doi: 10.1016/j.aml.2015.03.002. |
[19] |
T. F. Ma, Positive solutions for a nonlocal fourth order equation of Kirchhoff type,, \emph{Disc. Contin. Dyn. Syst.}, (2007), 694.
|
[20] |
T. F. Ma, Existence results for a model of nonlinear beam on elastic bearings,, \emph{Appl. Math. Lett.}, 13 (2000), 11.
doi: 10.1016/S0893-9659(00)00026-4. |
[21] |
T. F. Ma, Existence results and numerical solutions for a beam equation with nonlinear boundary conditions,, \emph{Appl. Numer. Math.}, 47 (2003), 189.
doi: 10.1016/S0168-9274(03)00065-5. |
[22] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, \emph{Nonlinear Anal.}, 70 (2009), 1275.
doi: 10.1016/j.na.2008.02.011. |
[23] |
P. J. McKenna and W. Walter, Traveling waves in a suspension bridge,, \emph{SIAM J. Appl. Math.}, 50 (1990), 703.
doi: 10.1137/0150041. |
[24] |
J. J. Nie, Existence and multiplicity of nontrivial solutions for a class of Schrödinger-Kirchhoff-type equations,, \emph{J. Math. Anal. Appl.}, 417 (2014), 65.
doi: 10.1016/j.jmaa.2014.03.027. |
[25] |
J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Anal.}, 75 (2012), 3470.
doi: 10.1016/j.na.2012.01.004. |
[26] |
W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains,, \emph{J. Differential Equations}, 259 (2015), 1256.
doi: 10.1016/j.jde.2015.02.040. |
[27] |
W. A. Strauss, Existence of solitary waves in higher dimensions,, \emph{Commun. Math. Phys.}, 55 (1977), 149.
|
[28] |
X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$,, \emph{Nonlinear Anal., 12 (2011), 1278.
doi: 10.1016/j.nonrwa.2010.09.023. |
[29] |
F. L. Wang, M. Avci and Y. K. An, Existence of solutions for fourth-order elliptic equations of Kirchhoff type,, \emph{J. Math. Anal. Appl.}, 409 (2014), 140.
doi: 10.1016/j.jmaa.2013.07.003. |
[30] |
M. Willem, Minimax Theorems,, Birkh\, (1996).
doi: 10.1007/978-1-4612-4146-1. |
[31] |
L. P. Xu and H. B. Chen, Nontrivial solutions for Kirchhoff-type problems with a parameter,, \emph{J. Math. Anal. Appl.}, 433 (2016), 455.
doi: 10.1016/j.jmaa.2015.07.035. |
[32] |
L. P. Xu and H. B. Chen, Multiplicity results for fourth order elliptic equations of Kirchhoff-type,, \emph{Acta Math. Sci. Ser. B}, 35 (2015), 1067.
doi: 10.1016/S0252-9602(15)30040-0. |
[33] |
L. P. Xu and H. B. Chen, Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type via genus theory,, \emph{Bound. Value Probl.}, 2014 (2014).
doi: 10.1186/s13661-014-0212-5. |
[34] |
Y. L. Yin and X. Wu, High energy solutions and nontrivial solutions for fourth-order elliptic equations,, \emph{J. Math. Anal. Appl.}, 375 (2011), 699.
doi: 10.1016/j.jmaa.2010.10.019. |
[35] |
Y. W. Ye and C. L. Tang, Infinitely many solutions for fourth-order elliptic equations,, \emph{J. Math. Anal. Appl.}, 394 (2012), 841.
doi: 10.1016/j.jmaa.2012.04.041. |
[36] |
Y. W. Ye and C. L. Tang, Existence and multiplicity of solutions for fourth-order elliptic equations in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 406 (2013), 335.
doi: 10.1016/j.jmaa.2013.04.079. |
[37] |
Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, \emph{J. Math. Anal. Appl.}, 317 (2006), 456.
doi: 10.1016/j.jmaa.2005.06.102. |
[38] |
J. Zhang, X. H. Tang and W. Zhang, Existence of multiple solutions of Kirchhoff type equation with sign-changing potential,, \emph{Appl. Math. Compu.}, 242 (2014), 491.
doi: 10.1016/j.amc.2014.05.070. |
[39] |
W. Zhang, X. H. Tang and J. Zhang, Infinitely many solutions for fourth-order elliptic equations with general potentials,, \emph{J. Math. Anal. Appl.}, 407 (2013), 359.
doi: 10.1016/j.jmaa.2013.05.044. |
[40] |
W. Zhang, X. H. Tang and J. Zhang, Infinitely many solutions for fourth-order elliptic equations with sign-changing potential,, \emph{Taiwanese J. Math.}, 18 (2014), 645.
doi: 10.11650/tjm.18.2014.3584. |
[41] |
W. Zhang, X. H. Tang and J. Zhang, Ground states for a class of asymptotically linear fourthorder elliptic equations,, \emph{Appl. Anal.}, 94 (2015), 2168.
doi: 10.1080/00036811.2014.979807. |
[42] |
W. Zhang, X. H. Tang and J. Zhang, Existence and concentration of solutions for sublinear fourth-order elliptic equations,, \emph{Electron. J. Diff. Equ.}, 2015 (2015), 1. Google Scholar |
show all references
References:
[1] |
C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains,, \emph{Z. Angew. Math. Phys.}, 65 (2014), 1153.
doi: 10.1007/s00033-013-0376-3. |
[2] |
J. M. Ball, Initial-boundary value for an extensible beam,, \emph{J. Math. Anal. Appl.}, 42 (1973), 61.
|
[3] |
H. M. Berger, A new approach to the analysis of large deflections of plates,, \emph{J. Appl. Mech.}, 22 (1955), 465.
|
[4] |
T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^N$,, \emph{Commun. Partial Differ. Equ.}, 20 (1995), 1725.
doi: 10.1080/03605309508821149. |
[5] |
T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology,, \emph{Ann. I. H. Poincar\'e Anal, 22 (2005), 259.
doi: 10.1016/j.anihpc.2004.07.005. |
[6] |
T. Bartch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems,, \emph{J. Anal. Math.}, 96 (2005), 1.
doi: 10.1007/BF02787822. |
[7] |
T. Bartsch, Z. Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations,, in \emph{Handbook of Differential Equations-Stationary Partial Differential Equations} (M. Chipot and P. Quittner eds.), (2005), 1.
doi: 10.1016/S1874-5733(05)80009-9. |
[8] |
B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems,, \emph{Nonlinear Anal.}, 71 (2009), 4883.
doi: 10.1016/j.na.2009.03.065. |
[9] |
B. T. Cheng, X. Wu and J. Liu, Multiple solutions for a class of Kirchhoff-type problems with concave nonlinearity,, \emph{NoDEA Nonl. Diff. Equa. Appl.}, 19 (2012), 521.
doi: 10.1007/s00030-011-0141-2. |
[10] |
B. T. Cheng and X. H. Tang, Infinitely many large energy solutions for Schrödinger-Kirchhoff type problem in $\mathbbR^N$,, \emph{J. Nonlinear Sci. Appl.}, 9 (2016), 652.
|
[11] |
X. J. Chang and Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian,, \emph{J. Differential Equations}, 256 (2014), 2965.
doi: 10.1016/j.jde.2014.01.027. |
[12] |
E. N. Dancer and Y. H. Du, On sign-changing solutions of certain semilinear elliptic problems,, \emph{Appl. Anal.}, 56 (1995), 193.
doi: 10.1080/00036819508840321. |
[13] |
Y. X. Guo and J. J. Nie, Existence and multiplicity of nontrivial solutions for p-Laplacian Schrödinger-Kirchhoff-type equations,, \emph{J. Math. Anal. Appl.}, 428 (2015), 1054.
doi: 10.1016/j.jmaa.2015.03.064. |
[14] |
X. M. He and W. M. Zou, Existen and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbbR^{3}$,, \emph{J. Differential Equations}, 2 (2012), 1813.
doi: 10.1016/j.jde.2011.08.035. |
[15] |
J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 369 (2010), 564.
doi: 10.1016/j.jmaa.2010.03.059. |
[16] |
Z. L. Liu and J. X. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations,, \emph{J. Differential Equations}, 172 (2001), 257.
doi: 10.1006/jdeq.2000.3867. |
[17] |
J. Liu, S. X. Chen and X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 395 (2012), 608.
doi: 10.1016/j.jmaa.2012.05.063. |
[18] |
H. L. Liu and H. B. Chen, Haibo Least energy nodal solution for quasilinear biharmonic equations with critical exponent in $\mathbbR^N$,, \emph{Appl. Math. Lett.}, 48 (2015), 85.
doi: 10.1016/j.aml.2015.03.002. |
[19] |
T. F. Ma, Positive solutions for a nonlocal fourth order equation of Kirchhoff type,, \emph{Disc. Contin. Dyn. Syst.}, (2007), 694.
|
[20] |
T. F. Ma, Existence results for a model of nonlinear beam on elastic bearings,, \emph{Appl. Math. Lett.}, 13 (2000), 11.
doi: 10.1016/S0893-9659(00)00026-4. |
[21] |
T. F. Ma, Existence results and numerical solutions for a beam equation with nonlinear boundary conditions,, \emph{Appl. Numer. Math.}, 47 (2003), 189.
doi: 10.1016/S0168-9274(03)00065-5. |
[22] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, \emph{Nonlinear Anal.}, 70 (2009), 1275.
doi: 10.1016/j.na.2008.02.011. |
[23] |
P. J. McKenna and W. Walter, Traveling waves in a suspension bridge,, \emph{SIAM J. Appl. Math.}, 50 (1990), 703.
doi: 10.1137/0150041. |
[24] |
J. J. Nie, Existence and multiplicity of nontrivial solutions for a class of Schrödinger-Kirchhoff-type equations,, \emph{J. Math. Anal. Appl.}, 417 (2014), 65.
doi: 10.1016/j.jmaa.2014.03.027. |
[25] |
J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Anal.}, 75 (2012), 3470.
doi: 10.1016/j.na.2012.01.004. |
[26] |
W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains,, \emph{J. Differential Equations}, 259 (2015), 1256.
doi: 10.1016/j.jde.2015.02.040. |
[27] |
W. A. Strauss, Existence of solitary waves in higher dimensions,, \emph{Commun. Math. Phys.}, 55 (1977), 149.
|
[28] |
X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$,, \emph{Nonlinear Anal., 12 (2011), 1278.
doi: 10.1016/j.nonrwa.2010.09.023. |
[29] |
F. L. Wang, M. Avci and Y. K. An, Existence of solutions for fourth-order elliptic equations of Kirchhoff type,, \emph{J. Math. Anal. Appl.}, 409 (2014), 140.
doi: 10.1016/j.jmaa.2013.07.003. |
[30] |
M. Willem, Minimax Theorems,, Birkh\, (1996).
doi: 10.1007/978-1-4612-4146-1. |
[31] |
L. P. Xu and H. B. Chen, Nontrivial solutions for Kirchhoff-type problems with a parameter,, \emph{J. Math. Anal. Appl.}, 433 (2016), 455.
doi: 10.1016/j.jmaa.2015.07.035. |
[32] |
L. P. Xu and H. B. Chen, Multiplicity results for fourth order elliptic equations of Kirchhoff-type,, \emph{Acta Math. Sci. Ser. B}, 35 (2015), 1067.
doi: 10.1016/S0252-9602(15)30040-0. |
[33] |
L. P. Xu and H. B. Chen, Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type via genus theory,, \emph{Bound. Value Probl.}, 2014 (2014).
doi: 10.1186/s13661-014-0212-5. |
[34] |
Y. L. Yin and X. Wu, High energy solutions and nontrivial solutions for fourth-order elliptic equations,, \emph{J. Math. Anal. Appl.}, 375 (2011), 699.
doi: 10.1016/j.jmaa.2010.10.019. |
[35] |
Y. W. Ye and C. L. Tang, Infinitely many solutions for fourth-order elliptic equations,, \emph{J. Math. Anal. Appl.}, 394 (2012), 841.
doi: 10.1016/j.jmaa.2012.04.041. |
[36] |
Y. W. Ye and C. L. Tang, Existence and multiplicity of solutions for fourth-order elliptic equations in $\mathbbR^N$,, \emph{J. Math. Anal. Appl.}, 406 (2013), 335.
doi: 10.1016/j.jmaa.2013.04.079. |
[37] |
Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, \emph{J. Math. Anal. Appl.}, 317 (2006), 456.
doi: 10.1016/j.jmaa.2005.06.102. |
[38] |
J. Zhang, X. H. Tang and W. Zhang, Existence of multiple solutions of Kirchhoff type equation with sign-changing potential,, \emph{Appl. Math. Compu.}, 242 (2014), 491.
doi: 10.1016/j.amc.2014.05.070. |
[39] |
W. Zhang, X. H. Tang and J. Zhang, Infinitely many solutions for fourth-order elliptic equations with general potentials,, \emph{J. Math. Anal. Appl.}, 407 (2013), 359.
doi: 10.1016/j.jmaa.2013.05.044. |
[40] |
W. Zhang, X. H. Tang and J. Zhang, Infinitely many solutions for fourth-order elliptic equations with sign-changing potential,, \emph{Taiwanese J. Math.}, 18 (2014), 645.
doi: 10.11650/tjm.18.2014.3584. |
[41] |
W. Zhang, X. H. Tang and J. Zhang, Ground states for a class of asymptotically linear fourthorder elliptic equations,, \emph{Appl. Anal.}, 94 (2015), 2168.
doi: 10.1080/00036811.2014.979807. |
[42] |
W. Zhang, X. H. Tang and J. Zhang, Existence and concentration of solutions for sublinear fourth-order elliptic equations,, \emph{Electron. J. Diff. Equ.}, 2015 (2015), 1. Google Scholar |
[1] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[2] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[3] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[4] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[5] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[6] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[7] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[8] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[9] |
Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152 |
[10] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[11] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[12] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[13] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[14] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[15] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[16] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[17] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
[18] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[19] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[20] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]