November  2016, 15(6): 2179-2202. doi: 10.3934/cpaa.2016033

Sharp well-posedness for the Chen-Lee equation

1. 

Departamento de Matemáticas, Universidad Nacional de Colombia, AK 30 45-03, 111321, Bogotá, Colombia

2. 

Instituto de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, RJ, Brazil

Received  December 2015 Revised  May 2016 Published  September 2016

We study the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation. We prove that results about local and global well-posedness for initial data in $H^s(\mathbb{R})$, with $s>-1/2$, are sharp in the sense that the flow-map data-solution fails to be $C^3$ in $H^s(\mathbb{R})$ when $s<-\frac{1}{2}$. Also, we determine the limiting behavior of the solutions when the dispersive and dissipative parameters goes to zero. In addition, we will discuss the asymptotic behavior (as $|x|\to \infty$) of the solutions by solving the equation in weighted Sobolev spaces.
Citation: Ricardo A. Pastrán, Oscar G. Riaño. Sharp well-posedness for the Chen-Lee equation. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2179-2202. doi: 10.3934/cpaa.2016033
References:
[1]

Differential Integral Equations, 16 (2003), 1249-1280.  Google Scholar

[2]

Adv. Differential Equations, 1 (1996), 1-20.  Google Scholar

[3]

Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.  Google Scholar

[4]

J. Differential Equations, 90 (1991), 238-287. doi: 10.1016/0022-0396(91)90148-3.  Google Scholar

[5]

SIAM J. Math. Anal., 27 (1996), 708-724. doi: 10.1137/0527038.  Google Scholar

[6]

Ph.D thesis, Universidad Nacional de Colombia, sede Bogotá, 2014. Google Scholar

[7]

Ph.D thesis, IMPA, 2008. Google Scholar

[8]

Phys. D, 139 (2000), 301-318. doi: 10.1016/S0167-2789(99)00227-4.  Google Scholar

[9]

Comm. Partial Differential Equations, 11 (1986), 1031-1081. doi: 10.1080/03605308608820456.  Google Scholar

[10]

J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[11]

Phys. Scr., T2/1 (1982), 41-47. Google Scholar

[12]

Nonlinear Anal., 93 (2013), 273-296. doi: 10.1016/j.na.2013.07.014.  Google Scholar

[13]

R. A. Pastrán and O. G. Riaño, On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces, preprint,, \emph{Rev. Colombiana Mat.}, ().   Google Scholar

[14]

Commun. Pure Appl. Anal., 7 (2008), 867-881. doi: 10.3934/cpaa.2008.7.867.  Google Scholar

[15]

J. Math. Phys., 31 (1990), 506-516. doi: 10.1063/1.528884.  Google Scholar

[16]

Phys. Fluids B 1, 1 (1989), 87-98. Google Scholar

[17]

Osaka J. Math., 48 (2011), 933-958.  Google Scholar

show all references

References:
[1]

Differential Integral Equations, 16 (2003), 1249-1280.  Google Scholar

[2]

Adv. Differential Equations, 1 (1996), 1-20.  Google Scholar

[3]

Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.  Google Scholar

[4]

J. Differential Equations, 90 (1991), 238-287. doi: 10.1016/0022-0396(91)90148-3.  Google Scholar

[5]

SIAM J. Math. Anal., 27 (1996), 708-724. doi: 10.1137/0527038.  Google Scholar

[6]

Ph.D thesis, Universidad Nacional de Colombia, sede Bogotá, 2014. Google Scholar

[7]

Ph.D thesis, IMPA, 2008. Google Scholar

[8]

Phys. D, 139 (2000), 301-318. doi: 10.1016/S0167-2789(99)00227-4.  Google Scholar

[9]

Comm. Partial Differential Equations, 11 (1986), 1031-1081. doi: 10.1080/03605308608820456.  Google Scholar

[10]

J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[11]

Phys. Scr., T2/1 (1982), 41-47. Google Scholar

[12]

Nonlinear Anal., 93 (2013), 273-296. doi: 10.1016/j.na.2013.07.014.  Google Scholar

[13]

R. A. Pastrán and O. G. Riaño, On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces, preprint,, \emph{Rev. Colombiana Mat.}, ().   Google Scholar

[14]

Commun. Pure Appl. Anal., 7 (2008), 867-881. doi: 10.3934/cpaa.2008.7.867.  Google Scholar

[15]

J. Math. Phys., 31 (1990), 506-516. doi: 10.1063/1.528884.  Google Scholar

[16]

Phys. Fluids B 1, 1 (1989), 87-98. Google Scholar

[17]

Osaka J. Math., 48 (2011), 933-958.  Google Scholar

[1]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[2]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[4]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[5]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[6]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[7]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[8]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[9]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[10]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[11]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[12]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[13]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[14]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[15]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[16]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[17]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[19]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[20]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]