November  2016, 15(6): 2203-2219. doi: 10.3934/cpaa.2016034

Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge

1. 

Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal

Received  December 2015 Revised  July 2016 Published  September 2016

The Maxwell-Klein-Gordon equations in 2+1 dimensions in temporal gauge are locally well-posed for low regularity data even below energy level. The corresponding (3+1)-dimensional case was considered by Yuan. Fundamental for the proof is a partial null structure in the nonlinearity which allows to rely on bilinear estimates in wave-Sobolev spaces by d'Ancona, Foschi and Selberg, on an $(L^p_x L^q_t)$ - estimate for the solution of the wave equation, and on the proof of a related result for the Yang-Mills equations by Tao.
Citation: Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034
References:
[1]

Contemporary Math., 526 (2010), 125-150. doi: 10.1090/conm/526/10379.  Google Scholar

[2]

Annals Math., 118 (1983), 187-214. doi: 10.2307/2006959.  Google Scholar

[3]

Comm. Pure Appl. Anal., 13 (2014), 1669-1683. doi: 10.3934/cpaa.2014.13.1669.  Google Scholar

[4]

Int. Math. Res. Notices, 5 (1996), 201-220. doi: 10.1155/S1073792896000153.  Google Scholar

[5]

Duke Math. J., 74 (1994), 19-44. doi: 10.1215/S0012-7094-94-07402-4.  Google Scholar

[6]

J. AMS, 17 (2004), 297-359. doi: 10.1090/S0894-0347-03-00445-4.  Google Scholar

[7]

J. Math. Phys., 21 (1980), 2291-2296. doi: 10.1063/1.524669.  Google Scholar

[8]

Adv. Diff. Equ., 19 (2014), 359-386.  Google Scholar

[9]

Adv. Diff. Equ., 20 (2015), 1009-1032.  Google Scholar

[10]

PhD. Thesis Princeton, 1999.  Google Scholar

[11]

Int. Math. Res. Not., 2008, art. ID rnn107.  Google Scholar

[12]

Comm. PDE, 35 (2010), 1029-1057. doi: 10.1080/03605301003717100.  Google Scholar

[13]

Amer. J. Math., 123 (2001), 838-908.  Google Scholar

[14]

J. Diff. Equ., 189 (2003), 366-382. doi: 10.1016/S0022-0396(02)00177-8.  Google Scholar

[15]

Discr. Cont. Dyn. Syst., 36 (2016), 1709-1719. doi: 10.3934/dcds.2016.36.1709.  Google Scholar

show all references

References:
[1]

Contemporary Math., 526 (2010), 125-150. doi: 10.1090/conm/526/10379.  Google Scholar

[2]

Annals Math., 118 (1983), 187-214. doi: 10.2307/2006959.  Google Scholar

[3]

Comm. Pure Appl. Anal., 13 (2014), 1669-1683. doi: 10.3934/cpaa.2014.13.1669.  Google Scholar

[4]

Int. Math. Res. Notices, 5 (1996), 201-220. doi: 10.1155/S1073792896000153.  Google Scholar

[5]

Duke Math. J., 74 (1994), 19-44. doi: 10.1215/S0012-7094-94-07402-4.  Google Scholar

[6]

J. AMS, 17 (2004), 297-359. doi: 10.1090/S0894-0347-03-00445-4.  Google Scholar

[7]

J. Math. Phys., 21 (1980), 2291-2296. doi: 10.1063/1.524669.  Google Scholar

[8]

Adv. Diff. Equ., 19 (2014), 359-386.  Google Scholar

[9]

Adv. Diff. Equ., 20 (2015), 1009-1032.  Google Scholar

[10]

PhD. Thesis Princeton, 1999.  Google Scholar

[11]

Int. Math. Res. Not., 2008, art. ID rnn107.  Google Scholar

[12]

Comm. PDE, 35 (2010), 1029-1057. doi: 10.1080/03605301003717100.  Google Scholar

[13]

Amer. J. Math., 123 (2001), 838-908.  Google Scholar

[14]

J. Diff. Equ., 189 (2003), 366-382. doi: 10.1016/S0022-0396(02)00177-8.  Google Scholar

[15]

Discr. Cont. Dyn. Syst., 36 (2016), 1709-1719. doi: 10.3934/dcds.2016.36.1709.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[2]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[3]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[4]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[5]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[6]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[7]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[8]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[9]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[10]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[11]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[12]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[13]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[14]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[15]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

[16]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[17]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[20]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]