• Previous Article
    Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients
November  2016, 15(6): 2247-2280. doi: 10.3934/cpaa.2016036

Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions

1. 

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan

Received  January 2016 Revised  July 2016 Published  September 2016

We study the Cauchy problem of the Klein-Gordon-Zakharov system in spatial dimension $d \ge 4$ with radial or non-radial initial datum $(u, \partial_t u, n,$ $ \partial_t n)|_{t=0} \in H^{s+1}(R^d) \times H^s(R^d) \times\dot{H}^s(R^d) \times \dot{H}^{s-1}(R^d)$. The critical value of $s$ is $s_c=d/2-2$. By the radial Strichartz estimates and $U^2, V^2$ type spaces, we prove that the small data global well-posedness and scattering hold at $s=s_c$ in $d \ge 4$ for radial initial datum. For non-radial initial datum, we prove that the local well-posedness hold at $s=1/4$ when $d=4$ and $s=s_c+1/(d+1)$ when $d \ge 5$.
Citation: Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036
References:
[1]

GAFA, 3 (1993), 107-156. doi: 10.1007/BF01896020.  Google Scholar

[2]

Indi. Univ. Math. J., 62 (2013), 991-1020. doi: 10.1512/iumj.2013.62.4970.  Google Scholar

[3]

J. Funct. Anal., 151 (1997), 384-436. doi: 10.1006/jfan.1997.3148.  Google Scholar

[4]

J. Funct. Anal., 133 (1995), 50-68. doi: 10.1006/jfan.1995.1119.  Google Scholar

[5]

Int. Math. Res. Not., 9 (2014), 2327-2342.  Google Scholar

[6]

Math. Res. Nett., 21 (2014), 733-755. doi: 10.4310/MRL.2014.v21.n4.a8.  Google Scholar

[7]

J. Anal. Math., 124 (2014), 1-38. doi: 10.1007/s11854-014-0025-6.  Google Scholar

[8]

Ann. I. H. Poincaré AN, 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[9]

Ann. I. H. Poincar\'e AN, 27 (2010), 971-972. doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[10]

Duke. Math. J., 159 (2011), 329-349. doi: 10.1215/00127094-1415889.  Google Scholar

[11]

Comm. Pure. Appl. Anal., 13 (2014), 1563-1591. doi: 10.3934/cpaa.2014.13.1563.  Google Scholar

[12]

Adv. Stud. Pure. Math., 23 (1994), 223-238.  Google Scholar

[13]

I. Kato and K. Tsugawa, Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, preprint,, \arXiv{1512.00551}., ().   Google Scholar

[14]

J. Math. Pures Appl., 95 (2011), 48-71. doi: 10.1016/j.matpur.2010.10.001.  Google Scholar

[15]

J. Amer. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[16]

Amer. J. Math., 120 (1998), 955-980.  Google Scholar

[17]

Comm. Pure. Appl. Math., 58 (2005), 217-284. doi: 10.1002/cpa.20067.  Google Scholar

[18]

Int. Math. Res. Not., 16 (2007), article ID rnm053, 36 pages. doi: 10.1093/imrn/rnm053.  Google Scholar

[19]

Amer. J. Math., 118 (1996), 1-16.  Google Scholar

[20]

J. Funct. Anal., 130 (1995), 357-426. doi: 10.1006/jfan.1995.1075.  Google Scholar

[21]

Math. Ann., 322 (2002), 603-621. doi: 10.1007/s002080200008.  Google Scholar

[22]

Rev. Mat. Iberoamericana., 19 (2003), 179-194. doi: 10.4171/RMI/342.  Google Scholar

[23]

J. Hyperbolic Differ. Equ., 2 (2005), 975-1008. doi: 10.1142/S0219891605000683.  Google Scholar

[24]

Ann. I. H. Poincaré AN, 27 (2010), 1073-1096. doi: 10.1016/j.anihpc.2010.02.002.  Google Scholar

[25]

Ann. I. H. Poincaré AN, 12 (1995), 459-503.  Google Scholar

[26]

Math. Ann., 313 (1999), 127-140. doi: 10.1007/s002080050254.  Google Scholar

[27]

T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations, preprint,, \arXiv{1209.1518}., ().   Google Scholar

[28]

in AMS, (2006). doi: 10.1090/cbms/106.  Google Scholar

[29]

Comm. Part. Diff. Eq., 23 (1998), 1781-1793. doi: 10.1080/03605309808821400.  Google Scholar

show all references

References:
[1]

GAFA, 3 (1993), 107-156. doi: 10.1007/BF01896020.  Google Scholar

[2]

Indi. Univ. Math. J., 62 (2013), 991-1020. doi: 10.1512/iumj.2013.62.4970.  Google Scholar

[3]

J. Funct. Anal., 151 (1997), 384-436. doi: 10.1006/jfan.1997.3148.  Google Scholar

[4]

J. Funct. Anal., 133 (1995), 50-68. doi: 10.1006/jfan.1995.1119.  Google Scholar

[5]

Int. Math. Res. Not., 9 (2014), 2327-2342.  Google Scholar

[6]

Math. Res. Nett., 21 (2014), 733-755. doi: 10.4310/MRL.2014.v21.n4.a8.  Google Scholar

[7]

J. Anal. Math., 124 (2014), 1-38. doi: 10.1007/s11854-014-0025-6.  Google Scholar

[8]

Ann. I. H. Poincaré AN, 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[9]

Ann. I. H. Poincar\'e AN, 27 (2010), 971-972. doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[10]

Duke. Math. J., 159 (2011), 329-349. doi: 10.1215/00127094-1415889.  Google Scholar

[11]

Comm. Pure. Appl. Anal., 13 (2014), 1563-1591. doi: 10.3934/cpaa.2014.13.1563.  Google Scholar

[12]

Adv. Stud. Pure. Math., 23 (1994), 223-238.  Google Scholar

[13]

I. Kato and K. Tsugawa, Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, preprint,, \arXiv{1512.00551}., ().   Google Scholar

[14]

J. Math. Pures Appl., 95 (2011), 48-71. doi: 10.1016/j.matpur.2010.10.001.  Google Scholar

[15]

J. Amer. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[16]

Amer. J. Math., 120 (1998), 955-980.  Google Scholar

[17]

Comm. Pure. Appl. Math., 58 (2005), 217-284. doi: 10.1002/cpa.20067.  Google Scholar

[18]

Int. Math. Res. Not., 16 (2007), article ID rnm053, 36 pages. doi: 10.1093/imrn/rnm053.  Google Scholar

[19]

Amer. J. Math., 118 (1996), 1-16.  Google Scholar

[20]

J. Funct. Anal., 130 (1995), 357-426. doi: 10.1006/jfan.1995.1075.  Google Scholar

[21]

Math. Ann., 322 (2002), 603-621. doi: 10.1007/s002080200008.  Google Scholar

[22]

Rev. Mat. Iberoamericana., 19 (2003), 179-194. doi: 10.4171/RMI/342.  Google Scholar

[23]

J. Hyperbolic Differ. Equ., 2 (2005), 975-1008. doi: 10.1142/S0219891605000683.  Google Scholar

[24]

Ann. I. H. Poincaré AN, 27 (2010), 1073-1096. doi: 10.1016/j.anihpc.2010.02.002.  Google Scholar

[25]

Ann. I. H. Poincaré AN, 12 (1995), 459-503.  Google Scholar

[26]

Math. Ann., 313 (1999), 127-140. doi: 10.1007/s002080050254.  Google Scholar

[27]

T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations, preprint,, \arXiv{1209.1518}., ().   Google Scholar

[28]

in AMS, (2006). doi: 10.1090/cbms/106.  Google Scholar

[29]

Comm. Part. Diff. Eq., 23 (1998), 1781-1793. doi: 10.1080/03605309808821400.  Google Scholar

[1]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[3]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[4]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[5]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[6]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018

[7]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[8]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[9]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[10]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[11]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[12]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[13]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[14]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[15]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[16]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[17]

Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021005

[18]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[19]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[20]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]