-
Previous Article
Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities
- CPAA Home
- This Issue
-
Next Article
Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients
Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions
1. | Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan |
References:
[1] |
GAFA, 3 (1993), 107-156.
doi: 10.1007/BF01896020. |
[2] |
Indi. Univ. Math. J., 62 (2013), 991-1020.
doi: 10.1512/iumj.2013.62.4970. |
[3] |
J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[4] |
J. Funct. Anal., 133 (1995), 50-68.
doi: 10.1006/jfan.1995.1119. |
[5] |
Int. Math. Res. Not., 9 (2014), 2327-2342. |
[6] |
Math. Res. Nett., 21 (2014), 733-755.
doi: 10.4310/MRL.2014.v21.n4.a8. |
[7] |
J. Anal. Math., 124 (2014), 1-38.
doi: 10.1007/s11854-014-0025-6. |
[8] |
Ann. I. H. Poincaré AN, 26 (2009), 917-941.
doi: 10.1016/j.anihpc.2008.04.002. |
[9] |
Ann. I. H. Poincar\'e AN, 27 (2010), 971-972.
doi: 10.1016/j.anihpc.2008.04.002. |
[10] |
Duke. Math. J., 159 (2011), 329-349.
doi: 10.1215/00127094-1415889. |
[11] |
Comm. Pure. Appl. Anal., 13 (2014), 1563-1591.
doi: 10.3934/cpaa.2014.13.1563. |
[12] |
Adv. Stud. Pure. Math., 23 (1994), 223-238. |
[13] |
I. Kato and K. Tsugawa, Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, preprint,, \arXiv{1512.00551}., (). Google Scholar |
[14] |
J. Math. Pures Appl., 95 (2011), 48-71.
doi: 10.1016/j.matpur.2010.10.001. |
[15] |
J. Amer. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[16] |
Amer. J. Math., 120 (1998), 955-980. |
[17] |
Comm. Pure. Appl. Math., 58 (2005), 217-284.
doi: 10.1002/cpa.20067. |
[18] |
Int. Math. Res. Not., 16 (2007), article ID rnm053, 36 pages.
doi: 10.1093/imrn/rnm053. |
[19] |
Amer. J. Math., 118 (1996), 1-16. |
[20] |
J. Funct. Anal., 130 (1995), 357-426.
doi: 10.1006/jfan.1995.1075. |
[21] |
Math. Ann., 322 (2002), 603-621.
doi: 10.1007/s002080200008. |
[22] |
Rev. Mat. Iberoamericana., 19 (2003), 179-194.
doi: 10.4171/RMI/342. |
[23] |
J. Hyperbolic Differ. Equ., 2 (2005), 975-1008.
doi: 10.1142/S0219891605000683. |
[24] |
Ann. I. H. Poincaré AN, 27 (2010), 1073-1096.
doi: 10.1016/j.anihpc.2010.02.002. |
[25] |
Ann. I. H. Poincaré AN, 12 (1995), 459-503. |
[26] |
Math. Ann., 313 (1999), 127-140.
doi: 10.1007/s002080050254. |
[27] |
T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations, preprint,, \arXiv{1209.1518}., (). Google Scholar |
[28] |
in AMS, (2006).
doi: 10.1090/cbms/106. |
[29] |
Comm. Part. Diff. Eq., 23 (1998), 1781-1793.
doi: 10.1080/03605309808821400. |
show all references
References:
[1] |
GAFA, 3 (1993), 107-156.
doi: 10.1007/BF01896020. |
[2] |
Indi. Univ. Math. J., 62 (2013), 991-1020.
doi: 10.1512/iumj.2013.62.4970. |
[3] |
J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[4] |
J. Funct. Anal., 133 (1995), 50-68.
doi: 10.1006/jfan.1995.1119. |
[5] |
Int. Math. Res. Not., 9 (2014), 2327-2342. |
[6] |
Math. Res. Nett., 21 (2014), 733-755.
doi: 10.4310/MRL.2014.v21.n4.a8. |
[7] |
J. Anal. Math., 124 (2014), 1-38.
doi: 10.1007/s11854-014-0025-6. |
[8] |
Ann. I. H. Poincaré AN, 26 (2009), 917-941.
doi: 10.1016/j.anihpc.2008.04.002. |
[9] |
Ann. I. H. Poincar\'e AN, 27 (2010), 971-972.
doi: 10.1016/j.anihpc.2008.04.002. |
[10] |
Duke. Math. J., 159 (2011), 329-349.
doi: 10.1215/00127094-1415889. |
[11] |
Comm. Pure. Appl. Anal., 13 (2014), 1563-1591.
doi: 10.3934/cpaa.2014.13.1563. |
[12] |
Adv. Stud. Pure. Math., 23 (1994), 223-238. |
[13] |
I. Kato and K. Tsugawa, Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, preprint,, \arXiv{1512.00551}., (). Google Scholar |
[14] |
J. Math. Pures Appl., 95 (2011), 48-71.
doi: 10.1016/j.matpur.2010.10.001. |
[15] |
J. Amer. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[16] |
Amer. J. Math., 120 (1998), 955-980. |
[17] |
Comm. Pure. Appl. Math., 58 (2005), 217-284.
doi: 10.1002/cpa.20067. |
[18] |
Int. Math. Res. Not., 16 (2007), article ID rnm053, 36 pages.
doi: 10.1093/imrn/rnm053. |
[19] |
Amer. J. Math., 118 (1996), 1-16. |
[20] |
J. Funct. Anal., 130 (1995), 357-426.
doi: 10.1006/jfan.1995.1075. |
[21] |
Math. Ann., 322 (2002), 603-621.
doi: 10.1007/s002080200008. |
[22] |
Rev. Mat. Iberoamericana., 19 (2003), 179-194.
doi: 10.4171/RMI/342. |
[23] |
J. Hyperbolic Differ. Equ., 2 (2005), 975-1008.
doi: 10.1142/S0219891605000683. |
[24] |
Ann. I. H. Poincaré AN, 27 (2010), 1073-1096.
doi: 10.1016/j.anihpc.2010.02.002. |
[25] |
Ann. I. H. Poincaré AN, 12 (1995), 459-503. |
[26] |
Math. Ann., 313 (1999), 127-140.
doi: 10.1007/s002080050254. |
[27] |
T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations, preprint,, \arXiv{1209.1518}., (). Google Scholar |
[28] |
in AMS, (2006).
doi: 10.1090/cbms/106. |
[29] |
Comm. Part. Diff. Eq., 23 (1998), 1781-1793.
doi: 10.1080/03605309808821400. |
[1] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[2] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[3] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[4] |
Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050 |
[5] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[6] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018 |
[7] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[8] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[9] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[10] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[11] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[12] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
[13] |
Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018 |
[14] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[15] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[16] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[17] |
Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021005 |
[18] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[19] |
Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074 |
[20] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]