# American Institute of Mathematical Sciences

• Previous Article
Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary
• CPAA Home
• This Issue
• Next Article
Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions
November  2016, 15(6): 2281-2300. doi: 10.3934/cpaa.2016037

## Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities

 1 Department of Mathematics, Texas A\&M University-Kingsville, 700 University Blvd., Kingsville, TX 78363-8202 , United States 2 Department of Mathematics, Atilim University 06836, Incek, Ankara

Received  February 2016 Revised  June 2016 Published  September 2016

In the case of oscillatory potentials, we present Lyapunov type inequalities for $n$th order forced differential equations of the form \begin{eqnarray} x^{(n)}(t)+\sum_{j=1}^{m}q_j(t)|x(t)|^{\alpha_j-1}x(t)=f(t) \end{eqnarray} satisfying the boundary conditions \begin{eqnarray} x(a_i)=x'(a_i)=x''(a_i)=\cdots=x^{(k_i)}(a_i)=0;\qquad i=1,2,\ldots,r, \end{eqnarray} where $a_1 < a_2 < \cdots < a_r$, $0\leq k_i$ and \begin{eqnarray} \sum_{j=1}^{r}k_j+r=n;\qquad r\geq 2. \end{eqnarray} No sign restriction is imposed on the forcing term and the nonlinearities satisfy \begin{eqnarray} 0 < \alpha_1 < \cdots < \alpha_j < 1 < \alpha_{j+1} < \cdots < \alpha_m < 2. \end{eqnarray} The obtained inequalities generalize and compliment the existing results in the literature.
Citation: Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037
##### References:
 [1] R. P. Agarwal, Boundary value problems for higher order integro-differential equations, Nonlinear Anal., 7 (1983), 259-270. doi: 10.1016/0362-546X(83)90070-6. [2] R. P. Agarwal, Some inequalities for a function having $n$ zeros. General inequalities, 3 (Oberwolfach, 1981), 371-378, Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel, 1983. [3] R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, Singapore: World Scientific, 1986. doi: 10.1142/0266. [4] R. P. Agarwal and P. J. Y. Wong, Lidstone polynomial and boundary value problems, Computers Math. Applic., 17 (1989), 1397-1421. doi: 10.1016/0898-1221(89)90023-0. [5] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Dordrecht, Boston, London: Kluwer Academic Publishers, 1993. doi: 10.1007/978-94-011-2026-5. [6] R. P. Agarwal, D. O'Regan, I. Rachunková and S. Staněk, Two-point higher-order BVPs with singularities in phase variables, Computers Math. Applic., 46 (2003), 1799-1826. doi: 10.1016/S0898-1221(03)90238-0. [7] R. P. Agarwal and P. J. Y. Wong, Eigenvalues of complementary Lidstone boundary value problems, Bound. Value Probl., 2012 (2012), 1-23. doi: 10.1186/1687-2770-2012-49. [8] R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for second order sub and super-half-linear differential equations, Dynam. Systems Appl., 24 (2015), 211-220. [9] R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for even order differential equations with mixed nonlinearities, J. Inequal. Appl., 2015 (2015), 142, 10 pp. doi: 10.1186/s13660-015-0633-4. [10] R. P. Agarwal and A. Özbekler, Disconjugacy via Lyapunov and Vallée-Poussin type inequalities for forced differential equations, Appl. Math. Comput., 265 (2015), 456-468. doi: 10.1016/j.amc.2015.05.038. [11] P. R. Beesack, On Green's function of an $N$-point boundary value problem, Pasific J. Math., 12 (1962), 801-812. [12] A. Beurling, Un théoréme sur les fonctions bornées et uniformément continues sur l'axe réel, Acta Math., 77 (1945), 127-136. [13] G. Borg, On a Liapunoff criterion of stability, Amer. J. Math., 71 (1949), 67-70. [14] R. C. Brown and D. B. Hinton, Opial's inequality and oscillation of 2nd order equations, Proc. Amer. Math. Soc., 125 (1997), 1123-1129. doi: 10.1090/S0002-9939-97-03907-5. [15] D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput., 216 (2010), 368-373. doi: 10.1016/j.amc.2010.01.010. [16] S. S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math., 12 (1983), 105-112. doi: 10.14492/hokmj/1381757783. [17] S. S. Cheng, Lyapunov inequalities for differential and difference equations, Fasc. Math., 23 (1991), 25-41. [18] R. S. Dahiya and B. Singh, A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equations, J. Math. Phys. Sci., 7 (1973), 163-170. [19] K. M. Das and A. S. Vatsala, On the Green's function of an $n$-point boundary value problem, Trans. Amer. Math. Soc., 182 (1973), 469-480. [20] K. M. Das and A. S. Vatsala, Green function for $n-n$ boundary value problem and an analogue of Hartman's result, J. Math. Anal. Appl., 51 (1975), 670-677. [21] O. Došlý and P. Řehák, Half-Linear Differential Equations, Heidelberg: Elsevier Ltd, 2005. [22] A. Elbert, A half-linear second order differential equation, Colloq Math Soc János Bolyai, 30 (1979), 158-180. [23] S. B. Eliason, A Lyapunov inequality for a certain non-linear differential equation, J. London Math. Soc., 2 (1970), 461-466. [24] S. B. Eliason, Lyapunov type inequalities for certain second order functional differential equations, SIAM J. Appl. Math., 27 (1974), 180-199. [25] S. B. Eliason, Lyapunov inequalities and bounds on solutions of certain second order equations, Canad. Math. Bull., 17 (1974), 499-504. [26] G. G. Gustafson, A Green's function convergence principle, with applications to computation and norm estimates, Rocky Mountain J. Math., 6 (1976), 457-492. [27] G. S. Guseinov and B. Kaymakcalan, Lyapunov inequalities for discrete linear Hamiltonian systems, Comput. Math. Appl., 45 (2003), 1399-1416. doi: 10.1016/S0898-1221(03)00095-6. [28] G. S. Guseinov and A. Zafer, Stability criteria for linear periodic impulsive Hamiltonian systems, J. Math. Anal. Appl., 35 (2007), 1195-1206. doi: 10.1016/j.jmaa.2007.01.095. [29] P. Hartman, Ordinary Differential Equations, New York, 1964 and Birkhäuser, Boston: Wiley, 1982. [30] X. He and X. H. Tang, Lyapunov-type inequalities for even order differential equations, Commun. Pure. Appl. Anal., 11 (2012), 465-473. doi: 10.3934/cpaa.2012.11.465. [31] H. Hochstadt, A new proof of stability estimate of Lyapunov, Proc. Amer. Math. Soc., 14 (1963), 525-526. [32] L. Jiang and Z. Zhou, Lyapunov inequality for linear Hamiltonian systems on time scales, J. Math. Anal. Appl., 310 (2005), 579-593. doi: 10.1016/j.jmaa.2005.02.026. [33] S. Karlin, Total Positivity, Vol. I, Stanford California: Stanford University Press, 1968. [34] Z. Kayar and A. Zafer, Stability criteria for linear Hamiltonian systems under impulsive perturbations, Appl. Math. Comput., 230 (2014), 680-686. doi: 10.1016/j.amc.2013.12.128. [35] M. K. Kwong, On Lyapunov's inequality for disfocality, J. Math. Anal. Appl., 83 (1981), 486-494. doi: 10.1016/0022-247X(81)90137-2. [36] C. Lee, C. Yeh, C. Hong and R. P. Agarwal, Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17 (2004), 847-853. doi: 10.1016/j.aml.2004.06.016. [37] A. M. Liapunov, Probleme général de la stabilité du mouvement, (French Translation of a Russian paper dated 1893), Ann Fac Sci Univ Toulouse 2 (1907), 27-247, Reprinted as Ann Math Studies, No. 17, Princeton, 1947. [38] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), Dordrecht: 53 Kluwer Academic Publishers Group, 1991. doi: 10.1007/978-94-011-3562-7. [39] P. L. Napoli and J. P. Pinasco, Estimates for eigenvalues of quasilinear elliptic systems, J. Differential Equations, 227 (2006), 102-115. doi: 10.1016/j.jde.2006.01.004. [40] Z. Nehari, Some eigenvalue estimates, J. Anal. Math., 7 (1959), 79-88. [41] Z. Nehari, On an inequality of Lyapunov, in: Studies in Mathematical Analysis and Related Topics, Stanford, CA: Stanford University Press, 1962. [42] B. G. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations, J. Anal. Math., 195 (1995), 527-536. doi: 10.1006/jmaa.1995.1372. [43] B. G. Pachpatte, Lyapunov type integral inequalities for certain differential equations, Georgian Math. J., 4 (1997), 139-148. doi: 10.1023/A:1022930116838. [44] B. G. Pachpatte, Inequalities related to the zeros of solutions of certain second order differential equations, Facta. Univ. Ser. Math. Inform., 16 (2001), 35-44. [45] S. Panigrahi, Lyapunov-type integral inequalities for certain higher order differential equations, Electron J Differential Equations, 2009 (2009), 1-14. [46] N. Parhi and S. Panigrahi, On Liapunov-type inequality for third-order differential equations, J. Math. Anal. Appl., 233 (1999), 445-460. doi: 10.1006/jmaa.1999.6265. [47] N. Parhi and S. Panigrahi, Liapunov-type inequality for higher order differential equations, Math. Slovaca, 52 (2002), 31-46. [48] T. W. Reid, A matrix equation related to an non-oscillation criterion and Lyapunov stability, Quart. Appl. Math. Soc., 23 (1965), 83-87. [49] T. W. Reid, A matrix Lyapunov inequality, J. Math. Anal. Appl., 32 (1970), 424-434. [50] B. Singh, Forced oscillation in general ordinary differential equations, Tamkang J. Math., 6 (1975), 5-11. [51] A. Tiryaki, M. Unal and D. Cakmak, Lyapunov-type inequalities for nonlinear systems, J. Math. Anal. Appl., 332 (2007), 497-511. doi: 10.1016/j.jmaa.2006.10.010. [52] A. Tiryaki, Recent developments of Lyapunov-type inequalities, Advances in Dynam. Sys. Appl., 5 (2010), 231-248. [53] M. Unal, D. Cakmak and A. Tiryaki, A discrete analogue of Lyapunov-type inequalities for nonlinear systems, Comput. Math. Appl., 55 (2008), 2631-2642. doi: 10.1016/j.camwa.2007.10.014. [54] M. Unal and D. Cakmak, Lyapunov-type inequalities for certain nonlinear systems on time scales, Turkish J. Math., 32 (2008), 255-275. [55] X. Yang, On Liapunov-type inequality for certain higher-order differential equations, Appl. Math. Comput., 134 (2003), 307-317. doi: 10.1016/S0096-3003(01)00285-5. [56] X. Yang, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput., 215 (2010), 3884-3890. doi: 10.1016/j.amc.2009.11.032. [57] A. Wintner, On the nonexistence of conjugate points, Amer. J. Math., 73 (1951), 368-380. [58] Q. M. Zhang and X. He, Lyapunov-type inequalities for a class of even-order differential equations, J. Inequal. Appl., 2012 (2012), 1-7. doi: 10.1186/1029-242X-2012-5.

show all references

##### References:
 [1] R. P. Agarwal, Boundary value problems for higher order integro-differential equations, Nonlinear Anal., 7 (1983), 259-270. doi: 10.1016/0362-546X(83)90070-6. [2] R. P. Agarwal, Some inequalities for a function having $n$ zeros. General inequalities, 3 (Oberwolfach, 1981), 371-378, Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel, 1983. [3] R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, Singapore: World Scientific, 1986. doi: 10.1142/0266. [4] R. P. Agarwal and P. J. Y. Wong, Lidstone polynomial and boundary value problems, Computers Math. Applic., 17 (1989), 1397-1421. doi: 10.1016/0898-1221(89)90023-0. [5] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Dordrecht, Boston, London: Kluwer Academic Publishers, 1993. doi: 10.1007/978-94-011-2026-5. [6] R. P. Agarwal, D. O'Regan, I. Rachunková and S. Staněk, Two-point higher-order BVPs with singularities in phase variables, Computers Math. Applic., 46 (2003), 1799-1826. doi: 10.1016/S0898-1221(03)90238-0. [7] R. P. Agarwal and P. J. Y. Wong, Eigenvalues of complementary Lidstone boundary value problems, Bound. Value Probl., 2012 (2012), 1-23. doi: 10.1186/1687-2770-2012-49. [8] R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for second order sub and super-half-linear differential equations, Dynam. Systems Appl., 24 (2015), 211-220. [9] R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for even order differential equations with mixed nonlinearities, J. Inequal. Appl., 2015 (2015), 142, 10 pp. doi: 10.1186/s13660-015-0633-4. [10] R. P. Agarwal and A. Özbekler, Disconjugacy via Lyapunov and Vallée-Poussin type inequalities for forced differential equations, Appl. Math. Comput., 265 (2015), 456-468. doi: 10.1016/j.amc.2015.05.038. [11] P. R. Beesack, On Green's function of an $N$-point boundary value problem, Pasific J. Math., 12 (1962), 801-812. [12] A. Beurling, Un théoréme sur les fonctions bornées et uniformément continues sur l'axe réel, Acta Math., 77 (1945), 127-136. [13] G. Borg, On a Liapunoff criterion of stability, Amer. J. Math., 71 (1949), 67-70. [14] R. C. Brown and D. B. Hinton, Opial's inequality and oscillation of 2nd order equations, Proc. Amer. Math. Soc., 125 (1997), 1123-1129. doi: 10.1090/S0002-9939-97-03907-5. [15] D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput., 216 (2010), 368-373. doi: 10.1016/j.amc.2010.01.010. [16] S. S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math., 12 (1983), 105-112. doi: 10.14492/hokmj/1381757783. [17] S. S. Cheng, Lyapunov inequalities for differential and difference equations, Fasc. Math., 23 (1991), 25-41. [18] R. S. Dahiya and B. Singh, A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equations, J. Math. Phys. Sci., 7 (1973), 163-170. [19] K. M. Das and A. S. Vatsala, On the Green's function of an $n$-point boundary value problem, Trans. Amer. Math. Soc., 182 (1973), 469-480. [20] K. M. Das and A. S. Vatsala, Green function for $n-n$ boundary value problem and an analogue of Hartman's result, J. Math. Anal. Appl., 51 (1975), 670-677. [21] O. Došlý and P. Řehák, Half-Linear Differential Equations, Heidelberg: Elsevier Ltd, 2005. [22] A. Elbert, A half-linear second order differential equation, Colloq Math Soc János Bolyai, 30 (1979), 158-180. [23] S. B. Eliason, A Lyapunov inequality for a certain non-linear differential equation, J. London Math. Soc., 2 (1970), 461-466. [24] S. B. Eliason, Lyapunov type inequalities for certain second order functional differential equations, SIAM J. Appl. Math., 27 (1974), 180-199. [25] S. B. Eliason, Lyapunov inequalities and bounds on solutions of certain second order equations, Canad. Math. Bull., 17 (1974), 499-504. [26] G. G. Gustafson, A Green's function convergence principle, with applications to computation and norm estimates, Rocky Mountain J. Math., 6 (1976), 457-492. [27] G. S. Guseinov and B. Kaymakcalan, Lyapunov inequalities for discrete linear Hamiltonian systems, Comput. Math. Appl., 45 (2003), 1399-1416. doi: 10.1016/S0898-1221(03)00095-6. [28] G. S. Guseinov and A. Zafer, Stability criteria for linear periodic impulsive Hamiltonian systems, J. Math. Anal. Appl., 35 (2007), 1195-1206. doi: 10.1016/j.jmaa.2007.01.095. [29] P. Hartman, Ordinary Differential Equations, New York, 1964 and Birkhäuser, Boston: Wiley, 1982. [30] X. He and X. H. Tang, Lyapunov-type inequalities for even order differential equations, Commun. Pure. Appl. Anal., 11 (2012), 465-473. doi: 10.3934/cpaa.2012.11.465. [31] H. Hochstadt, A new proof of stability estimate of Lyapunov, Proc. Amer. Math. Soc., 14 (1963), 525-526. [32] L. Jiang and Z. Zhou, Lyapunov inequality for linear Hamiltonian systems on time scales, J. Math. Anal. Appl., 310 (2005), 579-593. doi: 10.1016/j.jmaa.2005.02.026. [33] S. Karlin, Total Positivity, Vol. I, Stanford California: Stanford University Press, 1968. [34] Z. Kayar and A. Zafer, Stability criteria for linear Hamiltonian systems under impulsive perturbations, Appl. Math. Comput., 230 (2014), 680-686. doi: 10.1016/j.amc.2013.12.128. [35] M. K. Kwong, On Lyapunov's inequality for disfocality, J. Math. Anal. Appl., 83 (1981), 486-494. doi: 10.1016/0022-247X(81)90137-2. [36] C. Lee, C. Yeh, C. Hong and R. P. Agarwal, Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17 (2004), 847-853. doi: 10.1016/j.aml.2004.06.016. [37] A. M. Liapunov, Probleme général de la stabilité du mouvement, (French Translation of a Russian paper dated 1893), Ann Fac Sci Univ Toulouse 2 (1907), 27-247, Reprinted as Ann Math Studies, No. 17, Princeton, 1947. [38] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), Dordrecht: 53 Kluwer Academic Publishers Group, 1991. doi: 10.1007/978-94-011-3562-7. [39] P. L. Napoli and J. P. Pinasco, Estimates for eigenvalues of quasilinear elliptic systems, J. Differential Equations, 227 (2006), 102-115. doi: 10.1016/j.jde.2006.01.004. [40] Z. Nehari, Some eigenvalue estimates, J. Anal. Math., 7 (1959), 79-88. [41] Z. Nehari, On an inequality of Lyapunov, in: Studies in Mathematical Analysis and Related Topics, Stanford, CA: Stanford University Press, 1962. [42] B. G. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations, J. Anal. Math., 195 (1995), 527-536. doi: 10.1006/jmaa.1995.1372. [43] B. G. Pachpatte, Lyapunov type integral inequalities for certain differential equations, Georgian Math. J., 4 (1997), 139-148. doi: 10.1023/A:1022930116838. [44] B. G. Pachpatte, Inequalities related to the zeros of solutions of certain second order differential equations, Facta. Univ. Ser. Math. Inform., 16 (2001), 35-44. [45] S. Panigrahi, Lyapunov-type integral inequalities for certain higher order differential equations, Electron J Differential Equations, 2009 (2009), 1-14. [46] N. Parhi and S. Panigrahi, On Liapunov-type inequality for third-order differential equations, J. Math. Anal. Appl., 233 (1999), 445-460. doi: 10.1006/jmaa.1999.6265. [47] N. Parhi and S. Panigrahi, Liapunov-type inequality for higher order differential equations, Math. Slovaca, 52 (2002), 31-46. [48] T. W. Reid, A matrix equation related to an non-oscillation criterion and Lyapunov stability, Quart. Appl. Math. Soc., 23 (1965), 83-87. [49] T. W. Reid, A matrix Lyapunov inequality, J. Math. Anal. Appl., 32 (1970), 424-434. [50] B. Singh, Forced oscillation in general ordinary differential equations, Tamkang J. Math., 6 (1975), 5-11. [51] A. Tiryaki, M. Unal and D. Cakmak, Lyapunov-type inequalities for nonlinear systems, J. Math. Anal. Appl., 332 (2007), 497-511. doi: 10.1016/j.jmaa.2006.10.010. [52] A. Tiryaki, Recent developments of Lyapunov-type inequalities, Advances in Dynam. Sys. Appl., 5 (2010), 231-248. [53] M. Unal, D. Cakmak and A. Tiryaki, A discrete analogue of Lyapunov-type inequalities for nonlinear systems, Comput. Math. Appl., 55 (2008), 2631-2642. doi: 10.1016/j.camwa.2007.10.014. [54] M. Unal and D. Cakmak, Lyapunov-type inequalities for certain nonlinear systems on time scales, Turkish J. Math., 32 (2008), 255-275. [55] X. Yang, On Liapunov-type inequality for certain higher-order differential equations, Appl. Math. Comput., 134 (2003), 307-317. doi: 10.1016/S0096-3003(01)00285-5. [56] X. Yang, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput., 215 (2010), 3884-3890. doi: 10.1016/j.amc.2009.11.032. [57] A. Wintner, On the nonexistence of conjugate points, Amer. J. Math., 73 (1951), 368-380. [58] Q. M. Zhang and X. He, Lyapunov-type inequalities for a class of even-order differential equations, J. Inequal. Appl., 2012 (2012), 1-7. doi: 10.1186/1029-242X-2012-5.
 [1] Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675 [2] Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic and Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857 [3] Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 [4] Li-Xin Zhang. On the laws of the iterated logarithm under sub-linear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 409-460. doi: 10.3934/puqr.2021020 [5] Robert J. Elliott, Tak Kuen Siu. Stochastic volatility with regime switching and uncertain noise: Filtering with sub-linear expectations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 59-81. doi: 10.3934/dcdsb.2017003 [6] Pedro Marín-Rubio, José Real. Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 989-1006. doi: 10.3934/dcds.2010.26.989 [7] Li-Xin Zhang. A note on the cluster set of the law of the iterated logarithm under sub-linear expectations. Probability, Uncertainty and Quantitative Risk, 2022, 7 (2) : 85-100. doi: 10.3934/puqr.2022006 [8] T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167 [9] Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167 [10] Nguyen Dinh Cong, Nguyen Thi Thuy Quynh. Coincidence of Lyapunov exponents and central exponents of linear Ito stochastic differential equations with nondegenerate stochastic term. Conference Publications, 2011, 2011 (Special) : 332-342. doi: 10.3934/proc.2011.2011.332 [11] Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2335-2355. doi: 10.3934/dcdss.2020212 [12] A. Rodríguez-Bernal. Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1003-1032. doi: 10.3934/dcds.2009.25.1003 [13] Mahdi Roozbeh, Saman Babaie–Kafaki, Zohre Aminifard. Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3475-3491. doi: 10.3934/jimo.2020128 [14] Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619 [15] Peter Giesl, Sigurdur Hafstein. Existence of piecewise linear Lyapunov functions in arbitrary dimensions. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3539-3565. doi: 10.3934/dcds.2012.32.3539 [16] Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166 [17] Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33 [18] Huijuan Li, Robert Baier, Lars Grüne, Sigurdur F. Hafstein, Fabian R. Wirth. Computation of local ISS Lyapunov functions with low gains via linear programming. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2477-2495. doi: 10.3934/dcdsb.2015.20.2477 [19] Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381 [20] Weijun Zhan, Qian Guo, Yuhao Cong. The truncated Milstein method for super-linear stochastic differential equations with Markovian switching. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3663-3682. doi: 10.3934/dcdsb.2021201

2021 Impact Factor: 1.273