November  2016, 15(6): 2301-2328. doi: 10.3934/cpaa.2016038

Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary

1. 

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

2. 

Department of Mathematics, Faculty of Science, Hacettepe University, Beytepe 06800, Ankara

3. 

Haceteppe University, Ankara , Turkey

Received  February 2016 Revised  July 2016 Published  September 2016

We consider a (nonlinear) Berger plate in the absence of rotational inertia acted upon by nonlinear boundary dissipation. We take the boundary to have two disjoint components: a clamped (inactive) portion and a controlled portion where the feedback is active via a hinged-type condition. We emphasize the damping acts only in one boundary condition on a portion of the boundary. In [24] this type of boundary damping was considered for a Berger plate on the whole boundary and shown to yield the existence of a compact global attractor. In this work we address the issues arising from damping active only on a portion of the boundary, including deriving a necessary trace estimate for $(\Delta u)\big|_{\Gamma_0}$ and eliminating a geometric condition in [24] which was utilized on the damped portion of the boundary.
Additionally, we use recent techniques in the asymptotic behavior of hyperbolic-like dynamical systems [11, 18] involving a ``stabilizability" estimate to show that the compact global attractor has finite fractal dimension and exhibits additional regularity beyond that of the state space (for finite energy solutions).
Citation: George Avalos, Pelin G. Geredeli, Justin T. Webster. Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2301-2328. doi: 10.3934/cpaa.2016038
References:
[1]

J. P. Aubin, Une théorè de compacité, C.R. Acad. Sci. Paris, 256 (1963), 5042-5044.  Google Scholar

[2]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.  Google Scholar

[3]

G. Avalos and I. Lasiecka, Boundary controllability of thermoelastic plates via the free boundary conditions, SIAM J. Control. Optim., 38 (2000), 337-383. doi: 10.1137/S0363012998339836.  Google Scholar

[4]

A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys, 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.  Google Scholar

[7]

V. V. Bolotin, Nonconservative Problems of Elastic Stability, Pergamon Press, Oxford, 1963. Google Scholar

[8]

S. C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 15, Springer Science & Business Media, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[9]

F. Bucci, I. Chueshov and I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations, Comm. Pure and Appl. Anal., 6 (2007), 113-140.  Google Scholar

[10]

F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Dynam. Sys., 22 (2008), 557-586. doi: 10.3934/dcds.2008.22.557.  Google Scholar

[11]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, 2015. doi: 10.1007/978-3-319-22903-4.  Google Scholar

[12]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Diff. Equs., 252 (2012), 1229-1262. doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[13]

I. Chueshov, Introduction to the Theory of Infinite Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; http://www.emis.de/monographs/Chueshov/ Google Scholar

[14]

I. Chueshov, M. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation, Comm. PDE, 29 (2004), 1847-1976. doi: 10.1081/PDE-200040203.  Google Scholar

[15]

I. Chueshov and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differ. Equs., 198 (2004), 196-231. doi: 10.1016/j.jde.2003.08.008.  Google Scholar

[16]

I. Chueshov and I. Lasiecka, Long-time behavior of second-order evolutions with nonlinear damping, Memoires of AMS, 195, 2008. doi: 10.1090/memo/0912.  Google Scholar

[17]

I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differ. Equs., 233 (2008), 42-86. doi: 10.1016/j.jde.2006.09.019.  Google Scholar

[18]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer-Verlag, 2010. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[19]

I. Chueshov, I. Lasiecka and D. Toundykov, Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent, J. Dyn. Diff. Equs., 21 (2009), 269-314. doi: 10.1007/s10884-009-9132-y.  Google Scholar

[20]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping, Comm. in PDE, 39 (2014), 1965-1997. doi: 10.1080/03605302.2014.930484.  Google Scholar

[21]

P. Ciarlet and P. Rabier, Les Equations de Von Karman, Springer, 1980.  Google Scholar

[22]

A. Eden and A. J. Milani, Exponential attractors for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  Google Scholar

[23]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Cont. Dyn. Sys, 10 (2004), 211-238. doi: 10.3934/dcds.2004.10.211.  Google Scholar

[24]

P. G. Geredeli and J. T. Webster, Qualitative results on the dynamics of a Berger plate with nonlinear boundary damping, Nonlin. Anal: Real World Applications, 31 (2016), 227-256. doi: 10.1016/j.nonrwa.2016.02.002.  Google Scholar

[25]

P. G. Geredeli, I. Lasiecka and J. T. Webster, Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer, J. Diff. Eqs., 254 (2013), 1193-1229. doi: 10.1016/j.jde.2012.10.016.  Google Scholar

[26]

P. G. Geredeli and J. T. Webster, Decay rates to eqilibrium for nonlinear plate equations with geometrically constrained, degenerate dissipation, Appl. Math. and Optim., 68 (2013), 361-390. Erratum, Appl. Math. and Optim., 70 (2014), 565-566. Google Scholar

[27]

J. K. Hale and G. Raugel, Attractors for dissipative evolutionary equations, In International Conference on Differential Equations (Vol. 1, p. 2), 1993, World Scientific River Edge, NJ.  Google Scholar

[28]

G. Ji and I. Lasiecka, Nonlinear boundary feedback stabilization for a semilinear Kirchhoff plate with dissipation acting only via moments-limiting behavior, JMAA, 229 (1999), 452-479. doi: 10.1006/jmaa.1998.6170.  Google Scholar

[29]

A. Kh. Khanmamedov, Global attractors for von Karman equations with non-linear dissipation, J. Math. Anal. Appl, 318 (2006), 92-101. doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[30]

J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[31]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Cambridge University Press, Cambridge, 2000. Google Scholar

[32]

I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler-Bernoulli equations, Appl. Math Optim, 28 (1993), 277-306. doi: 10.1007/BF01200382.  Google Scholar

[33]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Diff. Equs., 247 (2009), 1120-1155. doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[34]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.  Google Scholar

[35]

J. L. Lions, Contrôlabilité exacte, perturbations et stabilization de systèmes distribués, Vol. I, Masson, Paris, 1989.  Google Scholar

[36]

J. Málek and D. Pražak, Large time behavior via the method of $l$-trajectories, J. Diff. Eqs., 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087.  Google Scholar

[37]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, In \emph{Handbook of Differential Equations: Evolutionary Equations} (M. C. Dafermos and M. Pokorny eds.), ().  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[38]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506. doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[39]

J.-P. Puel and M. Tucsnak, Boundary stabilization for the von Karman equations, SIAM J. Control and Optim., 33 (1995), 255-273. doi: 10.1137/S0363012992228350.  Google Scholar

[40]

D. Pražak, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, J. Dyn. Diff. Eqs., 14 (2002), 764-776. doi: 10.1023/A:1020756426088.  Google Scholar

[41]

G. Raugel, Global attractors in partial differential equations, In Handbook of Dynamical Systems (B. Fiedler ed.), v. 2, Elsevier Sciences, Amsterdam, 2002. doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[42]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica pura ed applicata IV, CXLVI (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[43]

C. P. Vendhan, A study of Berger equations applied to nonlinear vibrations of elastic plates, Int. J. Mech. Sci, 17 (1975), 461-468. Google Scholar

show all references

References:
[1]

J. P. Aubin, Une théorè de compacité, C.R. Acad. Sci. Paris, 256 (1963), 5042-5044.  Google Scholar

[2]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.  Google Scholar

[3]

G. Avalos and I. Lasiecka, Boundary controllability of thermoelastic plates via the free boundary conditions, SIAM J. Control. Optim., 38 (2000), 337-383. doi: 10.1137/S0363012998339836.  Google Scholar

[4]

A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys, 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.  Google Scholar

[7]

V. V. Bolotin, Nonconservative Problems of Elastic Stability, Pergamon Press, Oxford, 1963. Google Scholar

[8]

S. C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 15, Springer Science & Business Media, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[9]

F. Bucci, I. Chueshov and I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations, Comm. Pure and Appl. Anal., 6 (2007), 113-140.  Google Scholar

[10]

F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Dynam. Sys., 22 (2008), 557-586. doi: 10.3934/dcds.2008.22.557.  Google Scholar

[11]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, 2015. doi: 10.1007/978-3-319-22903-4.  Google Scholar

[12]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Diff. Equs., 252 (2012), 1229-1262. doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[13]

I. Chueshov, Introduction to the Theory of Infinite Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; http://www.emis.de/monographs/Chueshov/ Google Scholar

[14]

I. Chueshov, M. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation, Comm. PDE, 29 (2004), 1847-1976. doi: 10.1081/PDE-200040203.  Google Scholar

[15]

I. Chueshov and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differ. Equs., 198 (2004), 196-231. doi: 10.1016/j.jde.2003.08.008.  Google Scholar

[16]

I. Chueshov and I. Lasiecka, Long-time behavior of second-order evolutions with nonlinear damping, Memoires of AMS, 195, 2008. doi: 10.1090/memo/0912.  Google Scholar

[17]

I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differ. Equs., 233 (2008), 42-86. doi: 10.1016/j.jde.2006.09.019.  Google Scholar

[18]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer-Verlag, 2010. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[19]

I. Chueshov, I. Lasiecka and D. Toundykov, Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent, J. Dyn. Diff. Equs., 21 (2009), 269-314. doi: 10.1007/s10884-009-9132-y.  Google Scholar

[20]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping, Comm. in PDE, 39 (2014), 1965-1997. doi: 10.1080/03605302.2014.930484.  Google Scholar

[21]

P. Ciarlet and P. Rabier, Les Equations de Von Karman, Springer, 1980.  Google Scholar

[22]

A. Eden and A. J. Milani, Exponential attractors for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  Google Scholar

[23]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Cont. Dyn. Sys, 10 (2004), 211-238. doi: 10.3934/dcds.2004.10.211.  Google Scholar

[24]

P. G. Geredeli and J. T. Webster, Qualitative results on the dynamics of a Berger plate with nonlinear boundary damping, Nonlin. Anal: Real World Applications, 31 (2016), 227-256. doi: 10.1016/j.nonrwa.2016.02.002.  Google Scholar

[25]

P. G. Geredeli, I. Lasiecka and J. T. Webster, Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer, J. Diff. Eqs., 254 (2013), 1193-1229. doi: 10.1016/j.jde.2012.10.016.  Google Scholar

[26]

P. G. Geredeli and J. T. Webster, Decay rates to eqilibrium for nonlinear plate equations with geometrically constrained, degenerate dissipation, Appl. Math. and Optim., 68 (2013), 361-390. Erratum, Appl. Math. and Optim., 70 (2014), 565-566. Google Scholar

[27]

J. K. Hale and G. Raugel, Attractors for dissipative evolutionary equations, In International Conference on Differential Equations (Vol. 1, p. 2), 1993, World Scientific River Edge, NJ.  Google Scholar

[28]

G. Ji and I. Lasiecka, Nonlinear boundary feedback stabilization for a semilinear Kirchhoff plate with dissipation acting only via moments-limiting behavior, JMAA, 229 (1999), 452-479. doi: 10.1006/jmaa.1998.6170.  Google Scholar

[29]

A. Kh. Khanmamedov, Global attractors for von Karman equations with non-linear dissipation, J. Math. Anal. Appl, 318 (2006), 92-101. doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[30]

J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[31]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Cambridge University Press, Cambridge, 2000. Google Scholar

[32]

I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler-Bernoulli equations, Appl. Math Optim, 28 (1993), 277-306. doi: 10.1007/BF01200382.  Google Scholar

[33]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Diff. Equs., 247 (2009), 1120-1155. doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[34]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.  Google Scholar

[35]

J. L. Lions, Contrôlabilité exacte, perturbations et stabilization de systèmes distribués, Vol. I, Masson, Paris, 1989.  Google Scholar

[36]

J. Málek and D. Pražak, Large time behavior via the method of $l$-trajectories, J. Diff. Eqs., 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087.  Google Scholar

[37]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, In \emph{Handbook of Differential Equations: Evolutionary Equations} (M. C. Dafermos and M. Pokorny eds.), ().  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[38]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506. doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[39]

J.-P. Puel and M. Tucsnak, Boundary stabilization for the von Karman equations, SIAM J. Control and Optim., 33 (1995), 255-273. doi: 10.1137/S0363012992228350.  Google Scholar

[40]

D. Pražak, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, J. Dyn. Diff. Eqs., 14 (2002), 764-776. doi: 10.1023/A:1020756426088.  Google Scholar

[41]

G. Raugel, Global attractors in partial differential equations, In Handbook of Dynamical Systems (B. Fiedler ed.), v. 2, Elsevier Sciences, Amsterdam, 2002. doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[42]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica pura ed applicata IV, CXLVI (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[43]

C. P. Vendhan, A study of Berger equations applied to nonlinear vibrations of elastic plates, Int. J. Mech. Sci, 17 (1975), 461-468. Google Scholar

[1]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[2]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[3]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[4]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

[5]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[6]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[7]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[8]

Yizhao Qin, Yuxia Guo, Peng-Fei Yao. Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1555-1593. doi: 10.3934/dcds.2020086

[9]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[10]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[11]

Yongqin Liu, Shuichi Kawashima. Decay property for a plate equation with memory-type dissipation. Kinetic & Related Models, 2011, 4 (2) : 531-547. doi: 10.3934/krm.2011.4.531

[12]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

[13]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. Totally dissipative dynamical processes and their uniform global attractors. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1989-2004. doi: 10.3934/cpaa.2014.13.1989

[14]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[15]

Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67

[16]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[17]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[18]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[19]

Kangsheng Liu, Xu Liu, Bopeng Rao. Eventual regularity of a wave equation with boundary dissipation. Mathematical Control & Related Fields, 2012, 2 (1) : 17-28. doi: 10.3934/mcrf.2012.2.17

[20]

Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (1)

[Back to Top]