• Previous Article
    Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in $L^p$--spaces
  • CPAA Home
  • This Issue
  • Next Article
    Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary
November  2016, 15(6): 2329-2355. doi: 10.3934/cpaa.2016039

Steady state solutions of ferrofluid flow models

1. 

Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal (Clermont-Ferrand 2), 63177 Aubière cedex

2. 

Léonard de Vinci, Pôle Universitaire. Research Center, 92916 Paris la Défense Cedex, France

Received  February 2016 Revised  May 2016 Published  September 2016

We study two models of differential equations for the stationary flow of an incompressible viscous magnetic fluid subjected to an external magnetic field. The first model, called Rosensweig's model, consists of the incompressible Navier-Stokes equations, the angular momentum equation, the magnetization equation of Bloch-Torrey type, and the magnetostatic equations. The second one, called Shliomis model, is obtained by assuming that the angular momentum is given in terms of the magnetic field, the magnetization field and the vorticity. It consists of the incompressible Navier-Stokes equation, the magnetization equation and the magnetostatic equations. We prove, for each of the differential systems posed in a bounded domain of $\mathbb{R}^3$ and equipped with boundary conditions, existence of weak solutions by using regularization techniques, linearization and the Schauder fixed point theorem.
Citation: Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,, \emph{Comm. Pure Appl. Math., 17 (1964), 35.  doi: 10.1002/cpa.3160170104.  Google Scholar

[2]

Y. Amirat, K. Hamdache and F. Murat, Global weak solutions to the equations of motion for magnetic fluids,, \emph{J. Math. Fluid Mech., 10 (2008), 326.  doi: 10.1016/j.matpur.2009.01.015.  Google Scholar

[3]

Y. Amirat and K. Hamdache, Global weak solutions to a ferrofluid flow model,, \emph{Math. Meth. Appl. Sci., 31 (2007), 123.  doi: 10.1002/mma.896.  Google Scholar

[4]

C. Amrouche and N. Seloula, On the Stokes equations with the Navier-type boundary conditions,, \emph{Differ. Equ. & Appl., 3 (2011), 581.  doi: dx.doi.org/10.7153/dea-03-36.  Google Scholar

[5]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[6]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, \emph{Rendiconti del Seminario Matematico della Universit\`a di Padova, 31 (1961), 308.  doi: http://eudml.org/doc/107065.  Google Scholar

[7]

P. G. Ciarlet, Mathematical Elasticity,, North-Holland, (1988).  doi: 044481776X,9780444817761.  Google Scholar

[8]

R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques,, Vol. 5, (1984).   Google Scholar

[9]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems,, Springer tracts in Natural Philosophy, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. II. Nonlinear Steady Problems,, Springer tracts in Natural Philosophy, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[11]

G. D. Gaspari, Bloch equation for conduction-electron spin resonance,, \emph{Phys. Review, 131 (1966), 215.  doi: http://dx.doi.org/10.1103/PhysRev.151.215.  Google Scholar

[12]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,, Dunod-Gauthier-Villars, (1969).   Google Scholar

[13]

Q. Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, Applications of magnetic nonoparticles in biomedicine,, \emph{J. Phys. D: Appl. Phys., 36 (2003).   Google Scholar

[14]

C. Rinaldi and M. Zahn, Effects of spin viscosity on ferrofluids flow profiles in alternating and rotating magnetic fields,, \emph{Phys. of Fluids, 14 (2002), 2847.  doi: http://dx.doi.org/10.1063/1.1485762.  Google Scholar

[15]

R. E. Rosensweig, Ferrohydrodynamics,, Dover Publications, (1997).   Google Scholar

[16]

R. E. Rosensweig, Basic equations for magnetic fluids with internal rotations,, in \emph{Ferrofluids: Magnetically Controllable Fluids and Their Applications}, 594 (2002), 61.   Google Scholar

[17]

P. Shi and S. Wright, $W^{2,p}$ Regularity of the displacement problem for the Lamé system on $W^{2,s}$ domains,, \emph{J. Math. Anal. Appl., 239 (1999), 291.  doi: 10.1006/jmaa.1999.6562.  Google Scholar

[18]

M. I Shliomis, Effective viscosity of magnetic suspension,, \emph{Sov. Phys. JETP, 44 (1972), 1291.   Google Scholar

[19]

M. I Shliomis, Retrospective and issues,, in \emph{Ferrofluids: Magnetically Controllable Fluids and Their Applications}, 594 (2002), 85.   Google Scholar

[20]

R. Temam, Navier-Stokes Equations,, 3rd (revised) edition, (1984).  doi: 0821827375,9780821827376.  Google Scholar

[21]

H. C. Torrey, Bloch equations with diffusion terms,, \emph{Phys. Rev., 104 (1956), 563.   Google Scholar

[22]

M. Zahn, Magnetic fluid and nonoparticle applications to nanotechnology,, \emph{Journal of Nanoparticle Research, 3 (2001), 73.  doi: 10.1023/A:1011497813424.  Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,, \emph{Comm. Pure Appl. Math., 17 (1964), 35.  doi: 10.1002/cpa.3160170104.  Google Scholar

[2]

Y. Amirat, K. Hamdache and F. Murat, Global weak solutions to the equations of motion for magnetic fluids,, \emph{J. Math. Fluid Mech., 10 (2008), 326.  doi: 10.1016/j.matpur.2009.01.015.  Google Scholar

[3]

Y. Amirat and K. Hamdache, Global weak solutions to a ferrofluid flow model,, \emph{Math. Meth. Appl. Sci., 31 (2007), 123.  doi: 10.1002/mma.896.  Google Scholar

[4]

C. Amrouche and N. Seloula, On the Stokes equations with the Navier-type boundary conditions,, \emph{Differ. Equ. & Appl., 3 (2011), 581.  doi: dx.doi.org/10.7153/dea-03-36.  Google Scholar

[5]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[6]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, \emph{Rendiconti del Seminario Matematico della Universit\`a di Padova, 31 (1961), 308.  doi: http://eudml.org/doc/107065.  Google Scholar

[7]

P. G. Ciarlet, Mathematical Elasticity,, North-Holland, (1988).  doi: 044481776X,9780444817761.  Google Scholar

[8]

R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques,, Vol. 5, (1984).   Google Scholar

[9]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems,, Springer tracts in Natural Philosophy, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. II. Nonlinear Steady Problems,, Springer tracts in Natural Philosophy, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[11]

G. D. Gaspari, Bloch equation for conduction-electron spin resonance,, \emph{Phys. Review, 131 (1966), 215.  doi: http://dx.doi.org/10.1103/PhysRev.151.215.  Google Scholar

[12]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,, Dunod-Gauthier-Villars, (1969).   Google Scholar

[13]

Q. Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, Applications of magnetic nonoparticles in biomedicine,, \emph{J. Phys. D: Appl. Phys., 36 (2003).   Google Scholar

[14]

C. Rinaldi and M. Zahn, Effects of spin viscosity on ferrofluids flow profiles in alternating and rotating magnetic fields,, \emph{Phys. of Fluids, 14 (2002), 2847.  doi: http://dx.doi.org/10.1063/1.1485762.  Google Scholar

[15]

R. E. Rosensweig, Ferrohydrodynamics,, Dover Publications, (1997).   Google Scholar

[16]

R. E. Rosensweig, Basic equations for magnetic fluids with internal rotations,, in \emph{Ferrofluids: Magnetically Controllable Fluids and Their Applications}, 594 (2002), 61.   Google Scholar

[17]

P. Shi and S. Wright, $W^{2,p}$ Regularity of the displacement problem for the Lamé system on $W^{2,s}$ domains,, \emph{J. Math. Anal. Appl., 239 (1999), 291.  doi: 10.1006/jmaa.1999.6562.  Google Scholar

[18]

M. I Shliomis, Effective viscosity of magnetic suspension,, \emph{Sov. Phys. JETP, 44 (1972), 1291.   Google Scholar

[19]

M. I Shliomis, Retrospective and issues,, in \emph{Ferrofluids: Magnetically Controllable Fluids and Their Applications}, 594 (2002), 85.   Google Scholar

[20]

R. Temam, Navier-Stokes Equations,, 3rd (revised) edition, (1984).  doi: 0821827375,9780821827376.  Google Scholar

[21]

H. C. Torrey, Bloch equations with diffusion terms,, \emph{Phys. Rev., 104 (1956), 563.   Google Scholar

[22]

M. Zahn, Magnetic fluid and nonoparticle applications to nanotechnology,, \emph{Journal of Nanoparticle Research, 3 (2001), 73.  doi: 10.1023/A:1011497813424.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[8]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[12]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[20]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]