-
Previous Article
Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas
- CPAA Home
- This Issue
-
Next Article
Steady state solutions of ferrofluid flow models
Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in $L^p$--spaces
1. | Università degli Studi di Pavia, Dipartimento di Matematica “F. Casorati”, via Ferrata 1, 27100 Pavia |
2. | Dipartimento di Fisica, Universitá degli Studi di Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (Sa), Italy |
3. | Dipartimento di Ingegneria dell'Informazione e Matematica Applicata, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (Sa) |
References:
[1] |
A. Canale, A. Rhandi and C. Tacelli, Schrödinger type operators with unbounded diffusion and potential terms,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, (). Google Scholar |
[2] |
Trans. Am. Math. Soc., 284 (1984), 121-139.
doi: 10.2307/1999277. |
[3] |
Discrete Cont. Dyn. Syst. S., 6 (2013), 649-655. |
[4] |
Clarendon Press, Oxford, 1987. |
[5] |
Springer-Verlag, New York, 2000. |
[6] |
Discrete Contin. Dyn. Syst., 18 (2007), 747-772.
doi: 10.3934/dcds.2007.18.747. |
[7] |
Discrete Contin. Dyn. Syst., 33 (2013), 5049-5058. |
[8] |
Springer, 1983.
doi: 10.1007/978-3-642-61798-0. |
[9] |
J. Evol. Equ., 15 (2015), 53-88.
doi: 10.1007/s00028-014-0249-z. |
[10] |
Mediterranean Journal of Mathematics, 5 (2008), 357-369.
doi: 10.1007/s00009-008-0155-0. |
[11] |
Ann. Scuola Norm. Sup. Pisa Cl. Sci., XI (2012), 303-340. |
[12] |
J. Evol. Equ., 16 (2016), 391-439.
doi: 10.1007/s00028-015-0307-1. |
[13] |
Mat. Zametki, 67 (2000), 563-572.
doi: 10.1007/BF02676404. |
[14] |
Lecture Notes in Math. 1184, Springer-Verlag, 1986.
doi: 10.1007/BFb0074922. |
[15] |
J. Math. Soc. Japan, 34 (1982), 677-701.
doi: 10.2969/jmsj/03440677. |
[16] |
Japan. J. Math., 22 (1996), 199-239. |
[17] |
London Math. Soc. Monographs 31, Princeton Univ. Press 2004. |
[18] |
Academic Press, New York, 1975. |
[19] |
Arch. Rational Mech. Anal., 52 (1973), 44-48. |
show all references
References:
[1] |
A. Canale, A. Rhandi and C. Tacelli, Schrödinger type operators with unbounded diffusion and potential terms,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, (). Google Scholar |
[2] |
Trans. Am. Math. Soc., 284 (1984), 121-139.
doi: 10.2307/1999277. |
[3] |
Discrete Cont. Dyn. Syst. S., 6 (2013), 649-655. |
[4] |
Clarendon Press, Oxford, 1987. |
[5] |
Springer-Verlag, New York, 2000. |
[6] |
Discrete Contin. Dyn. Syst., 18 (2007), 747-772.
doi: 10.3934/dcds.2007.18.747. |
[7] |
Discrete Contin. Dyn. Syst., 33 (2013), 5049-5058. |
[8] |
Springer, 1983.
doi: 10.1007/978-3-642-61798-0. |
[9] |
J. Evol. Equ., 15 (2015), 53-88.
doi: 10.1007/s00028-014-0249-z. |
[10] |
Mediterranean Journal of Mathematics, 5 (2008), 357-369.
doi: 10.1007/s00009-008-0155-0. |
[11] |
Ann. Scuola Norm. Sup. Pisa Cl. Sci., XI (2012), 303-340. |
[12] |
J. Evol. Equ., 16 (2016), 391-439.
doi: 10.1007/s00028-015-0307-1. |
[13] |
Mat. Zametki, 67 (2000), 563-572.
doi: 10.1007/BF02676404. |
[14] |
Lecture Notes in Math. 1184, Springer-Verlag, 1986.
doi: 10.1007/BFb0074922. |
[15] |
J. Math. Soc. Japan, 34 (1982), 677-701.
doi: 10.2969/jmsj/03440677. |
[16] |
Japan. J. Math., 22 (1996), 199-239. |
[17] |
London Math. Soc. Monographs 31, Princeton Univ. Press 2004. |
[18] |
Academic Press, New York, 1975. |
[19] |
Arch. Rational Mech. Anal., 52 (1973), 44-48. |
[1] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[2] |
Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026 |
[3] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[4] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[5] |
Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135 |
[6] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[7] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[8] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394 |
[9] |
Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003 |
[10] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[11] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[12] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[13] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[14] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[15] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[16] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022 |
[17] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[18] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[19] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[20] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]