-
Previous Article
Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences
- CPAA Home
- This Issue
-
Next Article
Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in $L^p$--spaces
Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas
1. | College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China, China |
References:
[1] |
Phys. Rev. D, 66 (2002), 043507.
doi: 10.1103/PhysRevD.66.043507. |
[2] |
J. Cosmol. Astropart. Phys., 57 (2004), 1238-1243.
doi: 10.1088/1475-7516/2004/11/008. |
[3] |
N. Bilic, G. B. Tupper and R. D. Viollier, Dark matter, dark energy and the Chaplygin gas},, arXiv:astro-ph/0207423., ().
doi: arXiv:astro-ph/0207423. |
[4] |
J. Math. Fluid Mech., 7 (2005), S326-S331.
doi: 10.1007/s00021-005-0162-x. |
[5] |
Oxford University Press, Oxford, 2000.
doi: 0-19-850700-3 . |
[6] |
Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 41, New York: Longman Scientific and Technical, 1989.
doi: 0-582-01378-X . |
[7] |
Sci. Mem. Moscow Univ. Math. Phys., 21 (1904), 1-121.
doi: http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:33.0789.01. |
[8] |
J. Differential Equations, 202 (2004), 332-353.
doi: 10.1016/j.jde.2004.02.009. |
[9] |
SIAM J. Math. Anal., 34 (2003), 925-938.
doi: 10.1137/S0036141001399350. |
[10] |
Phys. D, 189 (2004), 141-165.
doi: 10.1016/j.physd.2003.09.039. |
[11] |
J. Math. Anal. Appl., 381 (2011), 17-26.
doi: 10.1016/j.jmaa.2011.04.017. |
[12] |
Phys. Lett. B, 646 (2007), 177-182.
doi: 10.1016/j.physletb.2006.12.070. |
[13] |
V. Gorini, A. Kamenshchik, U. Moschella and V. Pasquier, The chaplygin gas as an model for dark energy,, arXiv:gr-qc/0403062., ().
doi: arXiv:gr-qc/0403062. |
[14] |
Commun. Pure Appl. Anal., 9 (2010), 431-458.
doi: 10.2307/2152750. |
[15] |
Methods Appl. Anal., 8 (2001), 159-207.
doi: 10.4310/MAA.2001.v8.n1.a7. |
[16] |
Commun. Pure Appl. Anal., 15 (2016), 127-138. Google Scholar |
[17] |
J. Appl. Anal. Comput., 6 (2016), 376-395. Google Scholar |
[18] |
J. Aeronaut. Sci., 8 (1941), 337-356.
doi: http://dx.doi.org/10.2514/2.7046. |
[19] |
Appl. Math. Lett., 14 (2001), 519-523.
doi: 10.1016/S0893-9659(00)00187-7. |
[20] |
Z. Angew. Math. Phys., 56 (2005), 239-253.
doi: 10.1007/s00033-005-4118-2. |
[21] |
J. Hyperbolic Differ. Equ., 4 (2007), 629-653.
doi: 10.1142/S021989160700129X . |
[22] |
Arch. Ration. Mech. Anal., 191 (2009), 539-577. Google Scholar |
[23] |
Phys. Lett. B, 648 (2007), 329-332.
doi: doi:10.1016/j.physletb.2007.03.025. |
[24] |
Phys. Lett. B, 654 (2007), 1-6.
doi: doi:10.1016/j.physletb.2007.08.038. |
[25] |
Z. Angew. Math. Phys., 67 (2016), 1-24.
doi: 10.1007/s00033-016-0663-x. |
[26] |
Appl. Math. Lett., 24 (2011), 1124-1129.
doi: 10.1016/j.aml.2011.01.038. |
[27] |
J. Differential Equations, 249 (2010), 3024-3051.
doi: 10.1016/j.jde.2010.09.004. |
[28] |
Nonlinear Anal. RWA, 22 (2015), 115-128.
doi: doi:10.1016/j.nonrwa.2014.08.007. |
[29] |
in Mem. Amer. Math. Soc., 137, AMS, Providence, 1999.
doi: 10.1090/memo/0654. |
[30] |
Comm. Math. Phys, 156 (1993), 67-99.
doi: 10.1007/BF02096733. |
[31] |
Phys. Rev., 107 (1957), 884-900.
doi: 10.1103/PhysRev.107.884. |
[32] |
J. Fluid Mech., 171 (1986), 365-375.
doi: 10.1017/S0022112086001489. |
[33] |
Astrophys. J., 179 (1973), 897-907.
doi: 10.1086/151927. |
[34] |
J. Aeronaut. Sci., 6 (1939), 399-407.
doi: 10.2514/8.916. |
[35] |
J. Math. Anal. Appl., 403 (2013), 434-450.
doi: 10.1016/j.jmaa.2013.02.026. |
[36] |
Wiley, New York, 1972.
doi: 978-0-471-92567-5. |
[37] |
J. Math. Anal. Appl., 413 (2014), 800-820.
doi: 10.1016/j.jmaa.2013.12.025. |
[38] |
J. Math. Anal. Appl., 355 (2009), 594-605.
doi: 10.1016/j.jmaa.2009.01.075. |
[39] |
J. Math. Anal. Appl., 411 (2014), 506-521.
doi: 10.1016/j.jmaa.2013.09.050. |
[40] |
Abstr. Appl. Anal., 2013 (2013), 296361.
doi: 10.1155/2013/296361. |
[41] |
J. Cosmol. Astropart. Phys., 2006 (2006), 731-750.
doi: 10.1088/1475-7516/2006/01/003. |
show all references
References:
[1] |
Phys. Rev. D, 66 (2002), 043507.
doi: 10.1103/PhysRevD.66.043507. |
[2] |
J. Cosmol. Astropart. Phys., 57 (2004), 1238-1243.
doi: 10.1088/1475-7516/2004/11/008. |
[3] |
N. Bilic, G. B. Tupper and R. D. Viollier, Dark matter, dark energy and the Chaplygin gas},, arXiv:astro-ph/0207423., ().
doi: arXiv:astro-ph/0207423. |
[4] |
J. Math. Fluid Mech., 7 (2005), S326-S331.
doi: 10.1007/s00021-005-0162-x. |
[5] |
Oxford University Press, Oxford, 2000.
doi: 0-19-850700-3 . |
[6] |
Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 41, New York: Longman Scientific and Technical, 1989.
doi: 0-582-01378-X . |
[7] |
Sci. Mem. Moscow Univ. Math. Phys., 21 (1904), 1-121.
doi: http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:33.0789.01. |
[8] |
J. Differential Equations, 202 (2004), 332-353.
doi: 10.1016/j.jde.2004.02.009. |
[9] |
SIAM J. Math. Anal., 34 (2003), 925-938.
doi: 10.1137/S0036141001399350. |
[10] |
Phys. D, 189 (2004), 141-165.
doi: 10.1016/j.physd.2003.09.039. |
[11] |
J. Math. Anal. Appl., 381 (2011), 17-26.
doi: 10.1016/j.jmaa.2011.04.017. |
[12] |
Phys. Lett. B, 646 (2007), 177-182.
doi: 10.1016/j.physletb.2006.12.070. |
[13] |
V. Gorini, A. Kamenshchik, U. Moschella and V. Pasquier, The chaplygin gas as an model for dark energy,, arXiv:gr-qc/0403062., ().
doi: arXiv:gr-qc/0403062. |
[14] |
Commun. Pure Appl. Anal., 9 (2010), 431-458.
doi: 10.2307/2152750. |
[15] |
Methods Appl. Anal., 8 (2001), 159-207.
doi: 10.4310/MAA.2001.v8.n1.a7. |
[16] |
Commun. Pure Appl. Anal., 15 (2016), 127-138. Google Scholar |
[17] |
J. Appl. Anal. Comput., 6 (2016), 376-395. Google Scholar |
[18] |
J. Aeronaut. Sci., 8 (1941), 337-356.
doi: http://dx.doi.org/10.2514/2.7046. |
[19] |
Appl. Math. Lett., 14 (2001), 519-523.
doi: 10.1016/S0893-9659(00)00187-7. |
[20] |
Z. Angew. Math. Phys., 56 (2005), 239-253.
doi: 10.1007/s00033-005-4118-2. |
[21] |
J. Hyperbolic Differ. Equ., 4 (2007), 629-653.
doi: 10.1142/S021989160700129X . |
[22] |
Arch. Ration. Mech. Anal., 191 (2009), 539-577. Google Scholar |
[23] |
Phys. Lett. B, 648 (2007), 329-332.
doi: doi:10.1016/j.physletb.2007.03.025. |
[24] |
Phys. Lett. B, 654 (2007), 1-6.
doi: doi:10.1016/j.physletb.2007.08.038. |
[25] |
Z. Angew. Math. Phys., 67 (2016), 1-24.
doi: 10.1007/s00033-016-0663-x. |
[26] |
Appl. Math. Lett., 24 (2011), 1124-1129.
doi: 10.1016/j.aml.2011.01.038. |
[27] |
J. Differential Equations, 249 (2010), 3024-3051.
doi: 10.1016/j.jde.2010.09.004. |
[28] |
Nonlinear Anal. RWA, 22 (2015), 115-128.
doi: doi:10.1016/j.nonrwa.2014.08.007. |
[29] |
in Mem. Amer. Math. Soc., 137, AMS, Providence, 1999.
doi: 10.1090/memo/0654. |
[30] |
Comm. Math. Phys, 156 (1993), 67-99.
doi: 10.1007/BF02096733. |
[31] |
Phys. Rev., 107 (1957), 884-900.
doi: 10.1103/PhysRev.107.884. |
[32] |
J. Fluid Mech., 171 (1986), 365-375.
doi: 10.1017/S0022112086001489. |
[33] |
Astrophys. J., 179 (1973), 897-907.
doi: 10.1086/151927. |
[34] |
J. Aeronaut. Sci., 6 (1939), 399-407.
doi: 10.2514/8.916. |
[35] |
J. Math. Anal. Appl., 403 (2013), 434-450.
doi: 10.1016/j.jmaa.2013.02.026. |
[36] |
Wiley, New York, 1972.
doi: 978-0-471-92567-5. |
[37] |
J. Math. Anal. Appl., 413 (2014), 800-820.
doi: 10.1016/j.jmaa.2013.12.025. |
[38] |
J. Math. Anal. Appl., 355 (2009), 594-605.
doi: 10.1016/j.jmaa.2009.01.075. |
[39] |
J. Math. Anal. Appl., 411 (2014), 506-521.
doi: 10.1016/j.jmaa.2013.09.050. |
[40] |
Abstr. Appl. Anal., 2013 (2013), 296361.
doi: 10.1155/2013/296361. |
[41] |
J. Cosmol. Astropart. Phys., 2006 (2006), 731-750.
doi: 10.1088/1475-7516/2006/01/003. |
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021062 |
[3] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[4] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 |
[5] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[6] |
Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021016 |
[7] |
Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069 |
[8] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[9] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392 |
[10] |
Beixiang Fang, Qin Zhao. Uniqueness of steady 1-D shock solutions in a finite nozzle via vanishing viscosity aguments. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021066 |
[11] |
Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250 |
[12] |
Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048 |
[13] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[14] |
Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 |
[15] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[16] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[17] |
Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021086 |
[18] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
[19] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[20] |
Flank D. M. Bezerra, Rodiak N. Figueroa-López, Marcelo J. D. Nascimento. Fractional oscillon equations; solvability and connection with classical oscillon equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021067 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]