• Previous Article
    On some touchdown behaviors of the generalized MEMS device equation
  • CPAA Home
  • This Issue
  • Next Article
    Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas
November  2016, 15(6): 2401-2445. doi: 10.3934/cpaa.2016042

Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences

1. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland

2. 

Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 186 75 Prague 8

Received  March 2016 Revised  July 2016 Published  September 2016

We consider an evolutionary, non-degenerate, symmetric $p$-Laplacian. By symmetric we mean that the full gradient of $p$-Laplacian is replaced by its symmetric part, which causes a breakdown of the Uhlenbeck structure. We derive interior regularity of time derivatives of its local weak solution. To circumvent the space-time growth mismatch, we devise a new local regularity technique of iterations in Nikolskii-Bochner spaces. It is interesting by itself, as it may be modified to provide new regularity results for the full-gradient $p$-Laplacian case with lower-order dependencies. Finally, having our regularity result for time derivatives, we obtain respective regularity of the main part. The Appendix on Nikolskii-Bochner spaces, that includes theorems on their embeddings and interpolations, may be of independent interest.
Citation: Jan Burczak, P. Kaplický. Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2401-2445. doi: 10.3934/cpaa.2016042
References:
[1]

E. Acerbi, G. Mingione and G. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 25-60. doi: 10.1016/S0294-1449(03)00031-3.  Google Scholar

[2]

R. Adams and J. Fournier, Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[3]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, 35 (2000), 161-177.  Google Scholar

[4]

H. Amann, Anisotropic function spaces on singular manifolds,, preprint http://arxiv.org/pdf/1204.0606.pdf., ().  doi: 10.1002/mana.201100157.  Google Scholar

[5]

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56. doi: 10.1002/mana.3211860102.  Google Scholar

[6]

H. Bae and B. Jin, Regularity of non-Newtonian fluids, J. Math. Fluid Mech., 16 (2014), 225-241. doi: 10.1007/s00021-013-0149-y.  Google Scholar

[7]

H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 233-257. doi: 10.1007/s00021-008-0257-2.  Google Scholar

[8]

H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 258-273. doi: 10.1007/s00021-008-0258-1.  Google Scholar

[9]

H. Beirão da Veiga and F. Crispo, On the global $W^{2,q}$ regularity for nonlinear $N$-systems of the $p$-Laplacian type in $n$ space variables, Nonlinear Anal., 75 (2012), 4346-4354. doi: 10.1016/j.na.2012.03.021.  Google Scholar

[10]

H. Beirão da Veiga and F. Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1173-1191. doi: 10.3934/dcdss.2013.6.1173.  Google Scholar

[11]

H. Beirão da Veiga, P. Kaplický and M. Růžička, Boundary regularity of shear thickening flows, J. Math. Fluid Mech., 13 (2011), 387-404. doi: 10.1007/s00021-010-0025-y.  Google Scholar

[12]

A. Benedek and R. Panzone, The spaces $L^p$ with mixed norm, Duke Math J., 8 (1961), 301-324.  Google Scholar

[13]

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Inc., Boston, 1988.  Google Scholar

[14]

J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer-Verlag, Berlin, Heiderberg, New York, 1976.  Google Scholar

[15]

O. Besov, On some families of functional spaces. Imbedding and extension theorems (Russian), Dokl. Akad. Nauk SSSR, 126 (1959), 1163-1165.  Google Scholar

[16]

O. Besov, V. Il'in and S. Nikol'skii, Integral Representations of Functions, and Embedding Theorems (Russian), Nauka, Moscow, 1975.  Google Scholar

[17]

E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22. doi: 10.1515/crll.1985.357.1.  Google Scholar

[18]

B. Bojarski, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients (Russian), Mat. Sb. (N. S.), 43 (1957), 451-503.  Google Scholar

[19]

V. Bögelein, F. Duzaar and G. Mingione, The regularity of general parabolic systems with degenerate diffusion, Mem. Amer. Math. Soc., 221 (2013), no. 1041. doi: 10.1090/S0065-9266-2012-00664-2.  Google Scholar

[20]

M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids Math. Methods Appl. Sci., 33 (2010), 1995-2010. doi: 10.1002/mma.1314.  Google Scholar

[21]

J. Burczak, Regularity of solutions to nonlinear non-diagonal evolutionary systems, PhD Thesis, Warsaw 2015, (available at http://mmns.mimuw.edu.pl/phd/Burczak_phd.pdf, accessed 24.06.2016). Google Scholar

[22]

J. Burczak, Almost everywhere Hölder continuity of gradients to non-diagonal parabolic systems, manuscripta math., 144 (2014), 51-90. doi: 10.1007/s00229-013-0640-z.  Google Scholar

[23]

J. Burczak and P. Kaplický, Interior regularity of space derivatives to an evolutionary, symmetric $\varphi$-Laplacian,, preprint: arXiv:1507.05843 [math.AP], ().   Google Scholar

[24]

F. Crispo and C. Grisanti, On the existence, uniqueness and $C^{1, \gamma} (\O) \cap W^{2,2} (\O)$ regularity for a class of shear-thinning fluids, J. Math. Fluid Mech., 10 (2008), 455-487. doi: 10.1007/s00021-008-0282-1.  Google Scholar

[25]

E. DiBenedetto, Degenerate Parabolic Systems, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[26]

F. Duzaar and G. Mingione, Second order parabolic systems, optimal regularity and singular sets of solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 705-751. doi: 10.1016/j.anihpc.2004.10.011.  Google Scholar

[27]

F. Duzaar, G. Mingione and K. Steffen, Parabolic Systems with Polynomial Growth and Regularity, Memoirs A.M.S. 214, 2011. doi: 10.1090/S0065-9266-2011-00614-3.  Google Scholar

[28]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motion of generalized Newtonian fluids, Ann. Scuola Norm. Sup. Pisa., 9 (2010), 1-46.  Google Scholar

[29]

J. Frehse and S. Schwarzacher, On regularity of the time derivative for degenerate parabolic systems, SIAM J. Math. Anal., 47 (2015), 3917-3943. doi: 10.1137/141000725.  Google Scholar

[30]

M. Fuchs and G. Seregin, Global nonlinear evolution problem for generalized Newtonian fluids: local initial regularity of the strong solution, Comput. Math. Appl., 53 (2007), 509-520. doi: 10.1016/j.camwa.2006.02.039.  Google Scholar

[31]

K. Golovkin, On equivalent normalizations of fractional spaces (Russian), Trudy Mat. Inst. Steklova, 66 (1962), 364-383.  Google Scholar

[32]

P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl., 45 (1966), 143-206.  Google Scholar

[33]

B. Jin, On the Caccioppoli inequality of the unsteady Stokes system, Int. J. Numer. Anal. Model. Ser. B, 4 (2013), 215-223.  Google Scholar

[34]

O. John, A. Kufner and S. Fučík, Function Spaces, Academia, Prague, 1977.  Google Scholar

[35]

H. Johnen, Inequalities connected with the moduli of smoothness, Mat. Vest., 24 (1972), 289-303.  Google Scholar

[36]

P. Kaplický, Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions, Z. Anal. Anwendungen, 24 (2005), 467-486. doi: 10.4171/ZAA/1251.  Google Scholar

[37]

P. Kaplický, Regularity of flow of anisotropic fluid, J. Math. Fluid Mech., 10 (2008), 71-88. doi: 10.1007/s00021-006-0217-7.  Google Scholar

[38]

P. Kaplický, J. Málek and J Stará, Global-in-time Hoder continuity of the velocity gradients for fluids with shear-dependent viscosities, NoDEA, 9 (2002), 175-195. doi: 10.1007/s00030-002-8123-z.  Google Scholar

[39]

J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p \ge 2$, Adv. Differential Equations, 6 (2001), 257-302.  Google Scholar

[40]

A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles, J. Math Pures Appl., 9 (1927), 337-425. Google Scholar

[41]

T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions definded on a general region, Publ. Res. Inst. Math. Sci., 9 (1974), 325-396.  Google Scholar

[42]

J. Nečas and V. Sverák, On regularity of solutions of nonlinear parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 1-11.  Google Scholar

[43]

S. Nikol'skii, Some inequalities for entire functions of finite degree of several variables and their application (Russian), Doklady Akad. Nauk SSSR (N.S.), 76 (1951), 785-788.  Google Scholar

[44]

P. Rabier, Vector-valued Morrey's embedding theorem and Hölder continuity in parabolic problems, Electron. J. Diff. Equ., 10 (2011), 1-10.  Google Scholar

[45]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, volume 1748 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.  Google Scholar

[46]

B. Scharf, H. Schmeisser and W. Sickel, Traces of vector-valued Sobolev spaces, Math. Nachr., 285 (2012), 1082-1106. doi: 10.1002/mana.201100011.  Google Scholar

[47]

J. Simon, Sobolev, Besov and Nikol'skii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval, Ann. Mat. Pura Appl., 157 (1990), 117-148. doi: 10.1007/BF01765315.  Google Scholar

[48]

L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996. doi: 10.1007/978-3-0348-9193-6.  Google Scholar

[49]

P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl., 134 (1983), 241-266. doi: 10.1007/BF01773507.  Google Scholar

[50]

H. Triebel, Theory of Function Spaces I, Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[51]

H. Triebel, Theory of Function Spaces III, Birkhäuser Verlag, Basel, 2006.  Google Scholar

[52]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.  Google Scholar

[53]

E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[54]

A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47-76.  Google Scholar

show all references

References:
[1]

E. Acerbi, G. Mingione and G. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 25-60. doi: 10.1016/S0294-1449(03)00031-3.  Google Scholar

[2]

R. Adams and J. Fournier, Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[3]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, 35 (2000), 161-177.  Google Scholar

[4]

H. Amann, Anisotropic function spaces on singular manifolds,, preprint http://arxiv.org/pdf/1204.0606.pdf., ().  doi: 10.1002/mana.201100157.  Google Scholar

[5]

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56. doi: 10.1002/mana.3211860102.  Google Scholar

[6]

H. Bae and B. Jin, Regularity of non-Newtonian fluids, J. Math. Fluid Mech., 16 (2014), 225-241. doi: 10.1007/s00021-013-0149-y.  Google Scholar

[7]

H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 233-257. doi: 10.1007/s00021-008-0257-2.  Google Scholar

[8]

H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 258-273. doi: 10.1007/s00021-008-0258-1.  Google Scholar

[9]

H. Beirão da Veiga and F. Crispo, On the global $W^{2,q}$ regularity for nonlinear $N$-systems of the $p$-Laplacian type in $n$ space variables, Nonlinear Anal., 75 (2012), 4346-4354. doi: 10.1016/j.na.2012.03.021.  Google Scholar

[10]

H. Beirão da Veiga and F. Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1173-1191. doi: 10.3934/dcdss.2013.6.1173.  Google Scholar

[11]

H. Beirão da Veiga, P. Kaplický and M. Růžička, Boundary regularity of shear thickening flows, J. Math. Fluid Mech., 13 (2011), 387-404. doi: 10.1007/s00021-010-0025-y.  Google Scholar

[12]

A. Benedek and R. Panzone, The spaces $L^p$ with mixed norm, Duke Math J., 8 (1961), 301-324.  Google Scholar

[13]

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Inc., Boston, 1988.  Google Scholar

[14]

J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer-Verlag, Berlin, Heiderberg, New York, 1976.  Google Scholar

[15]

O. Besov, On some families of functional spaces. Imbedding and extension theorems (Russian), Dokl. Akad. Nauk SSSR, 126 (1959), 1163-1165.  Google Scholar

[16]

O. Besov, V. Il'in and S. Nikol'skii, Integral Representations of Functions, and Embedding Theorems (Russian), Nauka, Moscow, 1975.  Google Scholar

[17]

E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22. doi: 10.1515/crll.1985.357.1.  Google Scholar

[18]

B. Bojarski, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients (Russian), Mat. Sb. (N. S.), 43 (1957), 451-503.  Google Scholar

[19]

V. Bögelein, F. Duzaar and G. Mingione, The regularity of general parabolic systems with degenerate diffusion, Mem. Amer. Math. Soc., 221 (2013), no. 1041. doi: 10.1090/S0065-9266-2012-00664-2.  Google Scholar

[20]

M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids Math. Methods Appl. Sci., 33 (2010), 1995-2010. doi: 10.1002/mma.1314.  Google Scholar

[21]

J. Burczak, Regularity of solutions to nonlinear non-diagonal evolutionary systems, PhD Thesis, Warsaw 2015, (available at http://mmns.mimuw.edu.pl/phd/Burczak_phd.pdf, accessed 24.06.2016). Google Scholar

[22]

J. Burczak, Almost everywhere Hölder continuity of gradients to non-diagonal parabolic systems, manuscripta math., 144 (2014), 51-90. doi: 10.1007/s00229-013-0640-z.  Google Scholar

[23]

J. Burczak and P. Kaplický, Interior regularity of space derivatives to an evolutionary, symmetric $\varphi$-Laplacian,, preprint: arXiv:1507.05843 [math.AP], ().   Google Scholar

[24]

F. Crispo and C. Grisanti, On the existence, uniqueness and $C^{1, \gamma} (\O) \cap W^{2,2} (\O)$ regularity for a class of shear-thinning fluids, J. Math. Fluid Mech., 10 (2008), 455-487. doi: 10.1007/s00021-008-0282-1.  Google Scholar

[25]

E. DiBenedetto, Degenerate Parabolic Systems, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[26]

F. Duzaar and G. Mingione, Second order parabolic systems, optimal regularity and singular sets of solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 705-751. doi: 10.1016/j.anihpc.2004.10.011.  Google Scholar

[27]

F. Duzaar, G. Mingione and K. Steffen, Parabolic Systems with Polynomial Growth and Regularity, Memoirs A.M.S. 214, 2011. doi: 10.1090/S0065-9266-2011-00614-3.  Google Scholar

[28]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motion of generalized Newtonian fluids, Ann. Scuola Norm. Sup. Pisa., 9 (2010), 1-46.  Google Scholar

[29]

J. Frehse and S. Schwarzacher, On regularity of the time derivative for degenerate parabolic systems, SIAM J. Math. Anal., 47 (2015), 3917-3943. doi: 10.1137/141000725.  Google Scholar

[30]

M. Fuchs and G. Seregin, Global nonlinear evolution problem for generalized Newtonian fluids: local initial regularity of the strong solution, Comput. Math. Appl., 53 (2007), 509-520. doi: 10.1016/j.camwa.2006.02.039.  Google Scholar

[31]

K. Golovkin, On equivalent normalizations of fractional spaces (Russian), Trudy Mat. Inst. Steklova, 66 (1962), 364-383.  Google Scholar

[32]

P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl., 45 (1966), 143-206.  Google Scholar

[33]

B. Jin, On the Caccioppoli inequality of the unsteady Stokes system, Int. J. Numer. Anal. Model. Ser. B, 4 (2013), 215-223.  Google Scholar

[34]

O. John, A. Kufner and S. Fučík, Function Spaces, Academia, Prague, 1977.  Google Scholar

[35]

H. Johnen, Inequalities connected with the moduli of smoothness, Mat. Vest., 24 (1972), 289-303.  Google Scholar

[36]

P. Kaplický, Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions, Z. Anal. Anwendungen, 24 (2005), 467-486. doi: 10.4171/ZAA/1251.  Google Scholar

[37]

P. Kaplický, Regularity of flow of anisotropic fluid, J. Math. Fluid Mech., 10 (2008), 71-88. doi: 10.1007/s00021-006-0217-7.  Google Scholar

[38]

P. Kaplický, J. Málek and J Stará, Global-in-time Hoder continuity of the velocity gradients for fluids with shear-dependent viscosities, NoDEA, 9 (2002), 175-195. doi: 10.1007/s00030-002-8123-z.  Google Scholar

[39]

J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p \ge 2$, Adv. Differential Equations, 6 (2001), 257-302.  Google Scholar

[40]

A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles, J. Math Pures Appl., 9 (1927), 337-425. Google Scholar

[41]

T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions definded on a general region, Publ. Res. Inst. Math. Sci., 9 (1974), 325-396.  Google Scholar

[42]

J. Nečas and V. Sverák, On regularity of solutions of nonlinear parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 1-11.  Google Scholar

[43]

S. Nikol'skii, Some inequalities for entire functions of finite degree of several variables and their application (Russian), Doklady Akad. Nauk SSSR (N.S.), 76 (1951), 785-788.  Google Scholar

[44]

P. Rabier, Vector-valued Morrey's embedding theorem and Hölder continuity in parabolic problems, Electron. J. Diff. Equ., 10 (2011), 1-10.  Google Scholar

[45]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, volume 1748 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.  Google Scholar

[46]

B. Scharf, H. Schmeisser and W. Sickel, Traces of vector-valued Sobolev spaces, Math. Nachr., 285 (2012), 1082-1106. doi: 10.1002/mana.201100011.  Google Scholar

[47]

J. Simon, Sobolev, Besov and Nikol'skii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval, Ann. Mat. Pura Appl., 157 (1990), 117-148. doi: 10.1007/BF01765315.  Google Scholar

[48]

L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996. doi: 10.1007/978-3-0348-9193-6.  Google Scholar

[49]

P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl., 134 (1983), 241-266. doi: 10.1007/BF01773507.  Google Scholar

[50]

H. Triebel, Theory of Function Spaces I, Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[51]

H. Triebel, Theory of Function Spaces III, Birkhäuser Verlag, Basel, 2006.  Google Scholar

[52]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.  Google Scholar

[53]

E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[54]

A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47-76.  Google Scholar

[1]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[2]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[3]

Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228

[4]

Imtiaz Ahmad, Siraj-ul-Islam, Mehnaz, Sakhi Zaman. Local meshless differential quadrature collocation method for time-fractional PDEs. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2641-2654. doi: 10.3934/dcdss.2020223

[5]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[6]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[7]

Lu Zhang, Aihong Zou, Tao Yan, Ji Shu. Weak pullback attractors for stochastic Ginzburg-Landau equations in Bochner spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021063

[8]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[9]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[10]

Manil T. Mohan, Sivaguru S. Sritharan. New methods for local solvability of quasilinear symmetric hyperbolic systems. Evolution Equations & Control Theory, 2016, 5 (2) : 273-302. doi: 10.3934/eect.2016005

[11]

Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251

[12]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[13]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[14]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[15]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[16]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[17]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[18]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[19]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure & Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[20]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (118)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]