-
Previous Article
On some touchdown behaviors of the generalized MEMS device equation
- CPAA Home
- This Issue
-
Next Article
Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas
Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences
1. | Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland |
2. | Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 186 75 Prague 8 |
References:
[1] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 25-60.
doi: 10.1016/S0294-1449(03)00031-3. |
[2] |
Elsevier/Academic Press, Amsterdam, 2003. |
[3] |
Glas. Mat. Ser. III, 35 (2000), 161-177. |
[4] |
H. Amann, Anisotropic function spaces on singular manifolds,, preprint http://arxiv.org/pdf/1204.0606.pdf., ().
doi: 10.1002/mana.201100157. |
[5] |
Math. Nachr., 186 (1997), 5-56.
doi: 10.1002/mana.3211860102. |
[6] |
J. Math. Fluid Mech., 16 (2014), 225-241.
doi: 10.1007/s00021-013-0149-y. |
[7] |
J. Math. Fluid Mech., 11 (2009), 233-257.
doi: 10.1007/s00021-008-0257-2. |
[8] |
J. Math. Fluid Mech., 11 (2009), 258-273.
doi: 10.1007/s00021-008-0258-1. |
[9] |
Nonlinear Anal., 75 (2012), 4346-4354.
doi: 10.1016/j.na.2012.03.021. |
[10] |
Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1173-1191.
doi: 10.3934/dcdss.2013.6.1173. |
[11] |
J. Math. Fluid Mech., 13 (2011), 387-404.
doi: 10.1007/s00021-010-0025-y. |
[12] |
Duke Math J., 8 (1961), 301-324. |
[13] |
Academic Press, Inc., Boston, 1988. |
[14] |
Springer-Verlag, Berlin, Heiderberg, New York, 1976. |
[15] |
Dokl. Akad. Nauk SSSR, 126 (1959), 1163-1165. |
[16] |
Nauka, Moscow, 1975. |
[17] |
J. Reine Angew. Math., 357 (1985), 1-22.
doi: 10.1515/crll.1985.357.1. |
[18] |
Mat. Sb. (N. S.), 43 (1957), 451-503. |
[19] |
Mem. Amer. Math. Soc., 221 (2013), no. 1041.
doi: 10.1090/S0065-9266-2012-00664-2. |
[20] |
Math. Methods Appl. Sci., 33 (2010), 1995-2010.
doi: 10.1002/mma.1314. |
[21] |
PhD Thesis, Warsaw 2015, (available at http://mmns.mimuw.edu.pl/phd/Burczak_phd.pdf, accessed 24.06.2016). Google Scholar |
[22] |
manuscripta math., 144 (2014), 51-90.
doi: 10.1007/s00229-013-0640-z. |
[23] |
J. Burczak and P. Kaplický, Interior regularity of space derivatives to an evolutionary, symmetric $\varphi$-Laplacian,, preprint: arXiv:1507.05843 [math.AP], (). Google Scholar |
[24] |
J. Math. Fluid Mech., 10 (2008), 455-487.
doi: 10.1007/s00021-008-0282-1. |
[25] |
Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[26] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 705-751.
doi: 10.1016/j.anihpc.2004.10.011. |
[27] |
Memoirs A.M.S. 214, 2011.
doi: 10.1090/S0065-9266-2011-00614-3. |
[28] |
Ann. Scuola Norm. Sup. Pisa., 9 (2010), 1-46. |
[29] |
SIAM J. Math. Anal., 47 (2015), 3917-3943.
doi: 10.1137/141000725. |
[30] |
Comput. Math. Appl., 53 (2007), 509-520.
doi: 10.1016/j.camwa.2006.02.039. |
[31] |
Trudy Mat. Inst. Steklova, 66 (1962), 364-383. |
[32] |
J. Math. Pures Appl., 45 (1966), 143-206. |
[33] |
Int. J. Numer. Anal. Model. Ser. B, 4 (2013), 215-223. |
[34] |
Academia, Prague, 1977. |
[35] |
Mat. Vest., 24 (1972), 289-303. |
[36] |
Z. Anal. Anwendungen, 24 (2005), 467-486.
doi: 10.4171/ZAA/1251. |
[37] |
J. Math. Fluid Mech., 10 (2008), 71-88.
doi: 10.1007/s00021-006-0217-7. |
[38] |
NoDEA, 9 (2002), 175-195.
doi: 10.1007/s00030-002-8123-z. |
[39] |
Adv. Differential Equations, 6 (2001), 257-302. |
[40] |
J. Math Pures Appl., 9 (1927), 337-425. Google Scholar |
[41] |
Publ. Res. Inst. Math. Sci., 9 (1974), 325-396. |
[42] |
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 1-11. |
[43] |
Doklady Akad. Nauk SSSR (N.S.), 76 (1951), 785-788. |
[44] |
Electron. J. Diff. Equ., 10 (2011), 1-10. |
[45] |
volume 1748 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0104029. |
[46] |
Math. Nachr., 285 (2012), 1082-1106.
doi: 10.1002/mana.201100011. |
[47] |
Ann. Mat. Pura Appl., 157 (1990), 117-148.
doi: 10.1007/BF01765315. |
[48] |
Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.
doi: 10.1007/978-3-0348-9193-6. |
[49] |
Ann. Mat. Pura Appl., 134 (1983), 241-266.
doi: 10.1007/BF01773507. |
[50] |
Birkhäuser Verlag, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1. |
[51] |
Birkhäuser Verlag, Basel, 2006. |
[52] |
Acta Math., 138 (1977), 219-240. |
[53] |
Springer Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0. |
[54] |
Duke Math. J., 12 (1945), 47-76. |
show all references
References:
[1] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 25-60.
doi: 10.1016/S0294-1449(03)00031-3. |
[2] |
Elsevier/Academic Press, Amsterdam, 2003. |
[3] |
Glas. Mat. Ser. III, 35 (2000), 161-177. |
[4] |
H. Amann, Anisotropic function spaces on singular manifolds,, preprint http://arxiv.org/pdf/1204.0606.pdf., ().
doi: 10.1002/mana.201100157. |
[5] |
Math. Nachr., 186 (1997), 5-56.
doi: 10.1002/mana.3211860102. |
[6] |
J. Math. Fluid Mech., 16 (2014), 225-241.
doi: 10.1007/s00021-013-0149-y. |
[7] |
J. Math. Fluid Mech., 11 (2009), 233-257.
doi: 10.1007/s00021-008-0257-2. |
[8] |
J. Math. Fluid Mech., 11 (2009), 258-273.
doi: 10.1007/s00021-008-0258-1. |
[9] |
Nonlinear Anal., 75 (2012), 4346-4354.
doi: 10.1016/j.na.2012.03.021. |
[10] |
Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1173-1191.
doi: 10.3934/dcdss.2013.6.1173. |
[11] |
J. Math. Fluid Mech., 13 (2011), 387-404.
doi: 10.1007/s00021-010-0025-y. |
[12] |
Duke Math J., 8 (1961), 301-324. |
[13] |
Academic Press, Inc., Boston, 1988. |
[14] |
Springer-Verlag, Berlin, Heiderberg, New York, 1976. |
[15] |
Dokl. Akad. Nauk SSSR, 126 (1959), 1163-1165. |
[16] |
Nauka, Moscow, 1975. |
[17] |
J. Reine Angew. Math., 357 (1985), 1-22.
doi: 10.1515/crll.1985.357.1. |
[18] |
Mat. Sb. (N. S.), 43 (1957), 451-503. |
[19] |
Mem. Amer. Math. Soc., 221 (2013), no. 1041.
doi: 10.1090/S0065-9266-2012-00664-2. |
[20] |
Math. Methods Appl. Sci., 33 (2010), 1995-2010.
doi: 10.1002/mma.1314. |
[21] |
PhD Thesis, Warsaw 2015, (available at http://mmns.mimuw.edu.pl/phd/Burczak_phd.pdf, accessed 24.06.2016). Google Scholar |
[22] |
manuscripta math., 144 (2014), 51-90.
doi: 10.1007/s00229-013-0640-z. |
[23] |
J. Burczak and P. Kaplický, Interior regularity of space derivatives to an evolutionary, symmetric $\varphi$-Laplacian,, preprint: arXiv:1507.05843 [math.AP], (). Google Scholar |
[24] |
J. Math. Fluid Mech., 10 (2008), 455-487.
doi: 10.1007/s00021-008-0282-1. |
[25] |
Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[26] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 705-751.
doi: 10.1016/j.anihpc.2004.10.011. |
[27] |
Memoirs A.M.S. 214, 2011.
doi: 10.1090/S0065-9266-2011-00614-3. |
[28] |
Ann. Scuola Norm. Sup. Pisa., 9 (2010), 1-46. |
[29] |
SIAM J. Math. Anal., 47 (2015), 3917-3943.
doi: 10.1137/141000725. |
[30] |
Comput. Math. Appl., 53 (2007), 509-520.
doi: 10.1016/j.camwa.2006.02.039. |
[31] |
Trudy Mat. Inst. Steklova, 66 (1962), 364-383. |
[32] |
J. Math. Pures Appl., 45 (1966), 143-206. |
[33] |
Int. J. Numer. Anal. Model. Ser. B, 4 (2013), 215-223. |
[34] |
Academia, Prague, 1977. |
[35] |
Mat. Vest., 24 (1972), 289-303. |
[36] |
Z. Anal. Anwendungen, 24 (2005), 467-486.
doi: 10.4171/ZAA/1251. |
[37] |
J. Math. Fluid Mech., 10 (2008), 71-88.
doi: 10.1007/s00021-006-0217-7. |
[38] |
NoDEA, 9 (2002), 175-195.
doi: 10.1007/s00030-002-8123-z. |
[39] |
Adv. Differential Equations, 6 (2001), 257-302. |
[40] |
J. Math Pures Appl., 9 (1927), 337-425. Google Scholar |
[41] |
Publ. Res. Inst. Math. Sci., 9 (1974), 325-396. |
[42] |
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 1-11. |
[43] |
Doklady Akad. Nauk SSSR (N.S.), 76 (1951), 785-788. |
[44] |
Electron. J. Diff. Equ., 10 (2011), 1-10. |
[45] |
volume 1748 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0104029. |
[46] |
Math. Nachr., 285 (2012), 1082-1106.
doi: 10.1002/mana.201100011. |
[47] |
Ann. Mat. Pura Appl., 157 (1990), 117-148.
doi: 10.1007/BF01765315. |
[48] |
Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.
doi: 10.1007/978-3-0348-9193-6. |
[49] |
Ann. Mat. Pura Appl., 134 (1983), 241-266.
doi: 10.1007/BF01773507. |
[50] |
Birkhäuser Verlag, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1. |
[51] |
Birkhäuser Verlag, Basel, 2006. |
[52] |
Acta Math., 138 (1977), 219-240. |
[53] |
Springer Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0. |
[54] |
Duke Math. J., 12 (1945), 47-76. |
[1] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[2] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[3] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[4] |
Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016 |
[5] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[6] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[7] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[8] |
Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041 |
[9] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
[10] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[11] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
[12] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[13] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021029 |
[14] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[15] |
Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069 |
[16] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[17] |
Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021028 |
[18] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378 |
[19] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[20] |
Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021010 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]