\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On some touchdown behaviors of the generalized MEMS device equation

Abstract Related Papers Cited by
  • We study the quenching behaviors for the generalized microelectromechanical system (MEMS) equation $u_{t}-\Delta u=\lambda\rho(x)f(u)$, $0 < u < A$ ($A=1$ or $+\infty$), in $\Omega\times(0,+\infty)$, $u(x,t)=0$ on $\partial\Omega\times(0,+\infty)$, $u(x,0)=u_{0}(x)\in[0,A)$ in $\Omega$, where $\lambda>0$, $\Omega\subset R^N$ is a bounded domain, $0\le \rho(x) \in C^{\alpha}(\overline{\Omega})$, $\rho\not\equiv0$, for some constant $0 < \alpha < 1$, $0 < f \in C^{2}((0,A))$ such that $f'(s)\ge0$, $f''(s)\ge0$ for any $s\in[0,A)$ and $u_{0}$ is smooth, $u_{0}=0$ on $\partial\Omega$. It is well known that quenching does occur and corresponds to a touchdown phenomenon. We establish an interesting quenching rate, and based on which we then prove that touchdown cannot occur at zero points of $\rho(x)$ or at the boundary of $\Omega$, without the assumption of compactness of the touchdown set.
    Mathematics Subject Classification: Primary: 35A01, 35B44; Secondary: 35K58.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t-\Delta u=g(u)$ revisited, Adv. Differential Equations, 1 (1996), 73-90.

    [2]

    P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Applied Math, 60 (2005), 1731-1768.doi: 10.1002/cpa.20189.

    [3]

    P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Courant Lect. Notes in Math, 20, Courant Institute of Mathematical Sciences, New York University, New York, (2010).doi: 10.1090/cln/020.

    [4]

    A. Friedman and B. Mcleod, Blow up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.doi: 10.1512/iumj.1985.34.34025.

    [5]

    N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal., 38 (2007), 1423-1449.doi: 10.1137/050647803.

    [6]

    N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: dynamic case, NoDEA Nonlinear Differ. Equ. Appl., 15 (2008), 115-145.doi: 10.1007/s00030-007-6004-1.

    [7]

    N. Ghoussoub and Y. Guo, Estimates for the quenching time of a parabolic equation modeling electrostatic MEMS, Methods Appl. Anal., 15 (2008), 361-376.doi: 10.4310/MAA.2008.v15.n3.a8.

    [8]

    J.-S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, J. Math. Anal., 151 (1990), 58-79.doi: 10.1016/0022-247X(90)90243-9.

    [9]

    J.-S. Guo and P. Souplet, No touchdown at zero points of the permittivity profile for the MEMS problem, SIAM J. Math. Anal., 47 (2015), 614-625.doi: 10.1137/140970070.

    [10]

    Y. Guo, On the partial differential equations of electrostatic MEMS devices III: refined touchdown behavior, J. Differential Equations, 224 (2008), 2277-2309.doi: 10.1016/j.jde.2008.02.005.

    [11]

    Y. Guo, Z. G. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM J. Appl. Math., 66 (2005), 309-338.doi: 10.1137/040613391.

    [12]

    K. M. Hui, Global and touchdown behaviour of the generalized MEMS, Adv. Math. Sci. Appl., 19 (2009), 347-370.

    [13]

    N. I. Kavallaris, T. Miyasita and T. Suzuki, Touchdown and related problems in electrostatic MEMS device equation, Nonlinear Differ. Equ. Appl., 15 (2008), 363-385.doi: 10.1007/s00030-008-7081-5.

    [14]

    J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62 (2002), 888-908.doi: 10.1137/S0036139900381079.

    [15]

    P. Quittner and PH. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts, Birkhäuser, Basel, 2007.

    [16]

    J. A. Pelesko and D. H. Berstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, (2002).

    [17]

    Q. Wang, Dynamical solutions of singular parabolic equations modeling electrostatic MEMS, Nonlinear Differ. Equ. Appl., 22 (2015), 629-650.doi: 10.1007/s00030-014-0298-6.

    [18]

    D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. Partial Differential Equations, 37 (2010), 259-274.doi: 10.1007/s00526-009-0262-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(178) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return