• Previous Article
    Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential
  • CPAA Home
  • This Issue
  • Next Article
    Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences
November  2016, 15(6): 2447-2456. doi: 10.3934/cpaa.2016043

On some touchdown behaviors of the generalized MEMS device equation

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

Received  March 2016 Revised  May 2016 Published  September 2016

We study the quenching behaviors for the generalized microelectromechanical system (MEMS) equation $u_{t}-\Delta u=\lambda\rho(x)f(u)$, $0 < u < A$ ($A=1$ or $+\infty$), in $\Omega\times(0,+\infty)$, $u(x,t)=0$ on $\partial\Omega\times(0,+\infty)$, $u(x,0)=u_{0}(x)\in[0,A)$ in $\Omega$, where $\lambda>0$, $\Omega\subset R^N$ is a bounded domain, $0\le \rho(x) \in C^{\alpha}(\overline{\Omega})$, $\rho\not\equiv0$, for some constant $0 < \alpha < 1$, $0 < f \in C^{2}((0,A))$ such that $f'(s)\ge0$, $f''(s)\ge0$ for any $s\in[0,A)$ and $u_{0}$ is smooth, $u_{0}=0$ on $\partial\Omega$. It is well known that quenching does occur and corresponds to a touchdown phenomenon. We establish an interesting quenching rate, and based on which we then prove that touchdown cannot occur at zero points of $\rho(x)$ or at the boundary of $\Omega$, without the assumption of compactness of the touchdown set.
Citation: Qi Wang. On some touchdown behaviors of the generalized MEMS device equation. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2447-2456. doi: 10.3934/cpaa.2016043
References:
[1]

H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t-\Delta u=g(u)$ revisited,, \emph{Adv. Differential Equations}, 1 (1996), 73.   Google Scholar

[2]

P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity,, \emph{Comm. Pure Applied Math}, 60 (2005), 1731.  doi: 10.1002/cpa.20189.  Google Scholar

[3]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS,, \emph{Courant Lect. Notes in Math}, 20 (2010).  doi: 10.1090/cln/020.  Google Scholar

[4]

A. Friedman and B. Mcleod, Blow up of positive solutions of semilinear heat equations,, \emph{Indiana Univ. Math. J.}, 34 (1985), 425.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar

[5]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case,, \emph{SIAM J. Math. Anal.}, 38 (2007), 1423.  doi: 10.1137/050647803.  Google Scholar

[6]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: dynamic case,, \emph{NoDEA Nonlinear Differ. Equ. Appl.}, 15 (2008), 115.  doi: 10.1007/s00030-007-6004-1.  Google Scholar

[7]

N. Ghoussoub and Y. Guo, Estimates for the quenching time of a parabolic equation modeling electrostatic MEMS,, \emph{Methods Appl. Anal.}, 15 (2008), 361.  doi: 10.4310/MAA.2008.v15.n3.a8.  Google Scholar

[8]

J.-S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation,, \emph{J. Math. Anal.}, 151 (1990), 58.  doi: 10.1016/0022-247X(90)90243-9.  Google Scholar

[9]

J.-S. Guo and P. Souplet, No touchdown at zero points of the permittivity profile for the MEMS problem,, \emph{SIAM J. Math. Anal.}, 47 (2015), 614.  doi: 10.1137/140970070.  Google Scholar

[10]

Y. Guo, On the partial differential equations of electrostatic MEMS devices III: refined touchdown behavior,, \emph{J. Differential Equations}, 224 (2008), 2277.  doi: 10.1016/j.jde.2008.02.005.  Google Scholar

[11]

Y. Guo, Z. G. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties,, \emph{SIAM J. Appl. Math.}, 66 (2005), 309.  doi: 10.1137/040613391.  Google Scholar

[12]

K. M. Hui, Global and touchdown behaviour of the generalized MEMS,, \emph{Adv. Math. Sci. Appl.}, 19 (2009), 347.   Google Scholar

[13]

N. I. Kavallaris, T. Miyasita and T. Suzuki, Touchdown and related problems in electrostatic MEMS device equation,, \emph{Nonlinear Differ. Equ. Appl.}, 15 (2008), 363.  doi: 10.1007/s00030-008-7081-5.  Google Scholar

[14]

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties,, \emph{SIAM J. Appl. Math.}, 62 (2002), 888.  doi: 10.1137/S0036139900381079.  Google Scholar

[15]

P. Quittner and PH. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkh\, (2007).   Google Scholar

[16]

J. A. Pelesko and D. H. Berstein, Modeling MEMS and NEMS,, Chapman & Hall/CRC, (2002).   Google Scholar

[17]

Q. Wang, Dynamical solutions of singular parabolic equations modeling electrostatic MEMS,, \emph{Nonlinear Differ. Equ. Appl.}, 22 (2015), 629.  doi: 10.1007/s00030-014-0298-6.  Google Scholar

[18]

D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations,, \emph{Calc. Var. Partial Differential Equations}, 37 (2010), 259.  doi: 10.1007/s00526-009-0262-1.  Google Scholar

show all references

References:
[1]

H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t-\Delta u=g(u)$ revisited,, \emph{Adv. Differential Equations}, 1 (1996), 73.   Google Scholar

[2]

P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity,, \emph{Comm. Pure Applied Math}, 60 (2005), 1731.  doi: 10.1002/cpa.20189.  Google Scholar

[3]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS,, \emph{Courant Lect. Notes in Math}, 20 (2010).  doi: 10.1090/cln/020.  Google Scholar

[4]

A. Friedman and B. Mcleod, Blow up of positive solutions of semilinear heat equations,, \emph{Indiana Univ. Math. J.}, 34 (1985), 425.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar

[5]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case,, \emph{SIAM J. Math. Anal.}, 38 (2007), 1423.  doi: 10.1137/050647803.  Google Scholar

[6]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: dynamic case,, \emph{NoDEA Nonlinear Differ. Equ. Appl.}, 15 (2008), 115.  doi: 10.1007/s00030-007-6004-1.  Google Scholar

[7]

N. Ghoussoub and Y. Guo, Estimates for the quenching time of a parabolic equation modeling electrostatic MEMS,, \emph{Methods Appl. Anal.}, 15 (2008), 361.  doi: 10.4310/MAA.2008.v15.n3.a8.  Google Scholar

[8]

J.-S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation,, \emph{J. Math. Anal.}, 151 (1990), 58.  doi: 10.1016/0022-247X(90)90243-9.  Google Scholar

[9]

J.-S. Guo and P. Souplet, No touchdown at zero points of the permittivity profile for the MEMS problem,, \emph{SIAM J. Math. Anal.}, 47 (2015), 614.  doi: 10.1137/140970070.  Google Scholar

[10]

Y. Guo, On the partial differential equations of electrostatic MEMS devices III: refined touchdown behavior,, \emph{J. Differential Equations}, 224 (2008), 2277.  doi: 10.1016/j.jde.2008.02.005.  Google Scholar

[11]

Y. Guo, Z. G. Pan and M. J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties,, \emph{SIAM J. Appl. Math.}, 66 (2005), 309.  doi: 10.1137/040613391.  Google Scholar

[12]

K. M. Hui, Global and touchdown behaviour of the generalized MEMS,, \emph{Adv. Math. Sci. Appl.}, 19 (2009), 347.   Google Scholar

[13]

N. I. Kavallaris, T. Miyasita and T. Suzuki, Touchdown and related problems in electrostatic MEMS device equation,, \emph{Nonlinear Differ. Equ. Appl.}, 15 (2008), 363.  doi: 10.1007/s00030-008-7081-5.  Google Scholar

[14]

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties,, \emph{SIAM J. Appl. Math.}, 62 (2002), 888.  doi: 10.1137/S0036139900381079.  Google Scholar

[15]

P. Quittner and PH. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkh\, (2007).   Google Scholar

[16]

J. A. Pelesko and D. H. Berstein, Modeling MEMS and NEMS,, Chapman & Hall/CRC, (2002).   Google Scholar

[17]

Q. Wang, Dynamical solutions of singular parabolic equations modeling electrostatic MEMS,, \emph{Nonlinear Differ. Equ. Appl.}, 22 (2015), 629.  doi: 10.1007/s00030-014-0298-6.  Google Scholar

[18]

D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations,, \emph{Calc. Var. Partial Differential Equations}, 37 (2010), 259.  doi: 10.1007/s00526-009-0262-1.  Google Scholar

[1]

Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009

[2]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[3]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[4]

Rafael Monteiro. Horizontal patterns from finite speed directional quenching. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3503-3534. doi: 10.3934/dcdsb.2018285

[5]

Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275

[6]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[7]

Jong-Shenq Guo, Bo-Chih Huang. Hyperbolic quenching problem with damping in the micro-electro mechanical system device. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 419-434. doi: 10.3934/dcdsb.2014.19.419

[8]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[9]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[10]

Jingyu Li, Chuangchuang Liang. Viscosity dominated limit of global solutions to a hyperbolic equation in MEMS. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 833-849. doi: 10.3934/dcds.2016.36.833

[11]

Giuseppe Marino, Hong-Kun Xu. Convergence of generalized proximal point algorithms. Communications on Pure & Applied Analysis, 2004, 3 (4) : 791-808. doi: 10.3934/cpaa.2004.3.791

[12]

Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381

[13]

Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 767-779. doi: 10.3934/dcds.2010.26.767

[14]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060

[15]

Daniele Cassani, Antonio Tarsia. Periodic solutions to nonlocal MEMS equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 631-642. doi: 10.3934/dcdss.2016017

[16]

Amin Boumenir, Vu Kim Tuan, Nguyen Hoang. The recovery of a parabolic equation from measurements at a single point. Evolution Equations & Control Theory, 2018, 7 (2) : 197-216. doi: 10.3934/eect.2018010

[17]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[18]

Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835

[19]

Santiago Cano-Casanova. Decay rate at infinity of the positive solutions of a generalized class of $T$homas-Fermi equations. Conference Publications, 2011, 2011 (Special) : 240-249. doi: 10.3934/proc.2011.2011.240

[20]

Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020115

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]